如圖,在正方形ABCD的外側(cè)作等邊三角形CDE,則∠DAE的度數(shù)為(  )
分析:根據(jù)正方形性質(zhì)得出∠ADC=90°,AD=DC,根據(jù)等邊三角形性質(zhì)得出DE=DC,∠EDC=60°,推出∠ADE=150°,AD=ED,根據(jù)等腰三角形性質(zhì)得出∠DAE=∠DEA,根據(jù)三角形的內(nèi)角和定理求出即可.
解答:解:∵四邊形ABCD是正方形,
∴∠ADC=90°,AD=DC,
∵△CDE是等邊三角形,
∴DE=DC,∠EDC=60°,
∴∠ADE=90°+60°=150°,AD=ED,
∴∠DAE=∠DEA=
1
2
(180°-∠ADE)=15°,
故選B.
點評:本題考查了三角形的內(nèi)角和定理,正方形性質(zhì),等腰三角形性質(zhì),等邊三角形的性質(zhì)的應(yīng)用,主要考查學(xué)生運用性質(zhì)機械能推理和計算的能力,本題綜合性比較強,是一道比較好的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說明這兩個三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線精英家教網(wǎng),交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度;
(3)若以點O,D,E,C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長為3+
3

(1)如圖①,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內(nèi)部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長;
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點P、N分別在邊CB、CA上,求這兩個正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長.

查看答案和解析>>

同步練習(xí)冊答案