【題目】下列語句錯誤的有(  。

①近似數(shù)0.010精確到千分位

②如果兩個角互補,那么一個是銳角,一個是鈍角

③若線段,則P一定是AB中點

AB兩點間的距離是指連接A、B兩點間的線段

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

從小數(shù)點右邊第一位開始依次為十分位,百分位,千分位; 互補兩個角相加之和等于180°,且銳角是大于90°的角,直角是等于90°的角,鈍角是大于90°的角,線段中點是指在同一直線的三點,AC=BC,則點C是線段AB的中點,兩點之間的距離是指兩點間線段的長度,根據(jù)以上知識點進行判定即可.

因為從小數(shù)點右邊第一位開始依次為十分位,百分位,千分位,①近似數(shù)0.010精確到千分位,說法正確,因為互補兩個角相加之和等于180°,且銳角是大于90°的角,直角是等于90°的角,鈍角是大于90°的角,所以如果兩個角互補,那么這兩個角是兩個直角或者是一個銳角和一個鈍角,②如果兩個角互補,那么一個是銳角,一個是鈍角,說法不夠嚴謹,所以不正確,③若線段,則P一定是AB中點,因為沒有說明三點共線,所以③不正確,

AB兩點間的距離是指連接A,B兩點間的線段,因為兩點之間的距離是指兩點間線段的長度,所以④不正確,因此錯誤有3個,故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+3經(jīng)過點B(﹣1,0)、C(3,0),交y軸于點A,將線段OB繞點O順時針旋轉(zhuǎn)90°,點B的對應(yīng)點為點M,過點A的直線與x軸交于點D(4,0).直角梯形EFGH的上底EF與線段CD重合,∠FEH=90°,EF∥HG,EF=EH=1.直角梯形EFGH從點D開始,沿射線DA方向勻速運動,運動的速度為1個長度單位/秒,在運動過程中腰FG與直線AD始終重合,設(shè)運動時間為t秒.
(1)求此拋物線的解析式;
(2)當t為何值時,以M、O、H、E為頂點的四邊形是特殊的平行四邊形;
(3)作點A關(guān)于拋物線對稱軸的對稱點A′,直線HG與對稱軸交于點K,當t為何值時,以A、A′、G、K為頂點的四邊形為平行四邊形?請直接寫出符合條件的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對角線相交于點于點于點F,連結(jié),則下列結(jié)論:;;圖中共有四對全等三角形其中正確結(jié)論的個數(shù)是

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個反比例函數(shù),在第一象限內(nèi)的圖象如圖所示,點P1,P2,P3,…,P2018在反比例函數(shù)圖象上,它們的橫坐標分別是,,,…,,縱坐標分別是1,3,5,…,共2018個連續(xù)奇數(shù),過點P1,P2,P3,…,P2018分別作軸的平行線,與的圖象交點依次是Q1),Q2),Q3,),…,Q2018),則=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們都知道無限不循環(huán)小數(shù)是無理數(shù),而無限循環(huán)小數(shù)是可以化成分數(shù)的。例如(3為循環(huán)節(jié))是可以化成分數(shù)的,方法如下:

②-①

所以可以化成分數(shù)為

請你閱讀上面材料完成下列問題:

(1))化成分數(shù)是 .

(2)請你將)化為分數(shù).

(3)請你將)化為分數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一包長方體的東西,用三種不同的方法打包,哪一種方法使用的繩子最短?哪一種方法使用的繩子最長?(a+b>2c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品20袋,檢測每袋的質(zhì)量是否符合標準,超過或不足的部分分別用正、負數(shù)來表示,記錄如下表:

與標準質(zhì)量的差值
(單位:g

5

2

0

1

3

6

袋 數(shù)

1

4

3

4

5

3

1)這批樣品的平均質(zhì)量比標準質(zhì)量多還是少?多或少幾克?

2)若每袋標準質(zhì)量為450克,則抽樣檢測的總質(zhì)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD的兩條對稱軸為坐標軸,點A的坐標為(2,1).一張透明紙上畫有一個點和一條拋物線,平移透明紙,這個點與點A重合,此時拋物線的函數(shù)表達式為y=x2 , 再次平移透明紙,使這個點與點C重合,則該拋物線的函數(shù)表達式變?yōu)椋?)
A.y=x2+8x+14
B.y=x2-8x+14
C.y=x2+4x+3
D.y=x2-4x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)某校八年級學(xué)生全部參加初二生物地理會考,從中抽取了部分學(xué)生的生物考試成績,將他們的成績進行統(tǒng)計后分為A、B、C、D四個等級,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

(1)抽取了__名學(xué)生成績;

(2)請把頻數(shù)分布直方圖補充完整;

(3)扇形統(tǒng)計圖中A等級所在的扇形的圓心角度數(shù)是__;

(4)若A、B、C三個等級為合格,該校初二年級有900名學(xué)生,估計全年級生物合格的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊答案