(2013•平南縣二模)已知:如圖:在?ABCD中,CE⊥AB,E為垂足,如果∠A=125°,則∠BCE的度數(shù)是( 。
分析:根據(jù)平行四邊形鄰角互補求出∠B,再根據(jù)直角三角形兩銳角互余列式計算即可得解.
解答:解:在?ABCD中,∵∠A=125°,
∴∠B=180°-∠A=180°-125°=55°,
∵CE⊥AB,
∴∠BEC=90°,
∴∠BCE=90°-∠B=90°-55°=35°.
故選C.
點評:本題主要考查了平行四邊形鄰角互補的性質(zhì),直角三角形兩銳角互余的性質(zhì),是基礎題,熟記性質(zhì)是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•平南縣二模)求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,則2S=2+22+23+24+…+22013,因此2S-S=22013-1.仿照以上推理,計算出1+5+52+53+…+52012=
52013-1
4
52013-1
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•平南縣二模)已知兩圓的圓心距為3,兩圓的半徑分別是方程x2-4x+3=0的兩根,那么這兩個圓的位置關系是
相交
相交

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•平南縣二模)(1)計算:(-
1
2
)-1-
12
+|-3|+4sin60°

(2)解方程組:
x+2y=1
3x-2y=11.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•平南縣二模)如圖,在扇形EAB中,半徑長AB=10,∠EAB=90°;以AB為直徑作半圓O,點D是弧BE上的一個動點,BD與半圓O交于點C,DG⊥AB于點G,DG與AC交于點F,連結(jié)OF.
(1)求證:DC=BC;
(2)設AG=x,F(xiàn)G2=y,試求y關于x的函數(shù)關系式,并寫出x的取值范圍;
(3)若點G落在線段OB上,當△FOG∽△ABC時,求線段AG的長度.

查看答案和解析>>

同步練習冊答案