如圖,AB是半圓O的直徑,過點(diǎn)O作弦AD的垂線交半圓O于點(diǎn)E,F(xiàn)為垂足,交AC于點(diǎn)C使∠BED=∠C.請(qǐng)判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論.
分析:直線AC與圓O的位置關(guān)系是相切,理由為:利用同弧所對(duì)的圓周角相等可得一對(duì)角相等,再由已知的兩角相等,等量代換可得∠DAB=∠C,又OC垂直于AD,根據(jù)垂直定義可得∠AFO為90°,進(jìn)而得到三角形AFO中兩銳角互余,等量代換可得三角形AOC中兩角互余,即∠CAO為90°,即可得到直線AC與圓的切線,得證.
解答:解:直線AC與圓O的位置關(guān)系是相切,理由為:
∵∠BED與∠DAB所對(duì)的弧都為
BD
,
∴∠BED=∠DAB,又∠BED=∠C,
∴∠DAB=∠C,
∵OC⊥AD,
∴∠AFO=90°,
∴∠DAB+∠AOC=90°,
∴∠C+∠AOC=90°,
∴∠OAC=90°,
∴AC⊥OA,
則AC為圓O的切線.
點(diǎn)評(píng):此題考查了直線與圓的位置關(guān)系,涉及的知識(shí)有:圓周角定理,垂直定義,利用了轉(zhuǎn)化及等量代換的思想,其中經(jīng)過直徑一端,且與直徑垂直的直線為圓的切線,熟練掌握此性質(zhì)是證明切線的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,AC是弦,點(diǎn)P從點(diǎn)B開始沿BA邊向點(diǎn)A以1cm/s的速度移動(dòng),若AB長(zhǎng)為10cm,點(diǎn)O到AC的距離為4cm.
(1)求弦AC的長(zhǎng);
(2)問經(jīng)過幾秒后,△APC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AB是半圓O的直徑,OD是半徑,BM切半圓于點(diǎn)B,OC與弦AD平行交BM于點(diǎn)C.
(1)求證:CD是半圓O的切線;
(2)若AB的長(zhǎng)為4,點(diǎn)D在半圓O上運(yùn)動(dòng),當(dāng)AD的長(zhǎng)為1時(shí),求點(diǎn)A到直線CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,點(diǎn)D是半圓上一動(dòng)點(diǎn),AB=10,AC=8,當(dāng)△ACD是等腰三角形時(shí),點(diǎn)D到AB的距離是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB是半圓O的直徑,以O(shè)A為直徑的半圓O′與弦AC交于點(diǎn)D,O′E∥AC,并交OC于點(diǎn)E,則下列結(jié)論:①S△O′OE=
1
2
S△AOC2;②點(diǎn)D時(shí)AC的中點(diǎn);③
AC
=2AD;④四邊形O′DEO是菱形.其中正確的結(jié)論是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案