如圖:
(1)求該拋物線的解析式;
(2)根據(jù)圖象回答:當(dāng)x為何范圍時,該函數(shù)值大于0.
(1)設(shè)拋物線的頂點式為y=a(x-1)2-1,
將x=2,y=0代入得:0=a-1,即a=1,
則拋物線解析式為y=(x-1)2-1=x2-2x;

(2)由拋物線與x軸的交點為(0,0)與(2,0),
根據(jù)函數(shù)圖象得:當(dāng)x<0或x>2時,該函數(shù)值大于0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c的圖象交x軸于點A(x0,0)和點B(2,0),與y軸的正半軸交于點C,其對稱軸是直線x=-1,tan∠BAC=2,點A關(guān)于y軸的對稱點為點D.
(1)確定A、C、D三點的坐標(biāo);
(2)求過B、C、D三點的拋物線的解析式;
(3)若過點(0,3)且平行于x軸的直線與(2)小題中所求拋物線交于M、N兩點,以MN為一邊,拋物線上任意一點P(x,y)為頂點作平行四邊形,若平行四邊形的面積為S,寫出S關(guān)于P點縱坐標(biāo)y的函數(shù)解析式;
(4)當(dāng)
1
2
<x<4時,(3)小題中平行四邊形的面積是否有最大值?若有,請求出;若無,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△OAB的頂點A(-6,0),B(0,2),O是坐標(biāo)原點,將△OAB繞點O按順時針旋轉(zhuǎn)90°,得到△ODC.
(1)寫出C,D兩點的坐標(biāo);
(2)求過A,D,C三點的拋物線的解析式,并求此拋物線頂點E的坐標(biāo);
(3)證明AB⊥BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標(biāo)系,y軸是拋物線的對稱軸,頂點E到坐標(biāo)原點O的距離為6m.
(1)求拋物線的解析式;
(2)一輛貨運卡車高4.5m,寬2.4m,它能通過該隧道嗎?
(3)如果該隧道內(nèi)設(shè)雙行道,為了安全起見,在隧道正中間設(shè)有0.4m的隔離帶,則該輛貨運卡車還能通過隧道嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖,拋物線y=-x2+bx+c與x軸,y軸分別相交于點A(-1,0),B(0,3)兩點,其頂點為D
(1)求該拋物線的解析式;
(2)若拋物線與x軸另一個交點為E,求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線y=kx+2經(jīng)過點P(1,
5
2
),與x軸相交于點A;拋物線y=ax2+bx(a>0)經(jīng)過點A和點P,頂點為M.
(1)求直線y=kx+2的表達(dá)式;
(2)求拋物線y=ax2+bx的表達(dá)式;
(3)設(shè)此直線與y軸相交于點B,直線BM與x軸相交于點C,點D的坐標(biāo)為(
8
3
,0),試判斷△ACB與△ABD是否相似,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一位籃球運動員站在罰球線后投籃,球入籃得分.下列圖象中,可以大致反映籃球出手(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

附加題:如圖所示,已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點離水面8m,以水平線AB為x軸,AB的中點為原點建立坐標(biāo)系.
(1)此橋拱線所在拋物線的解析式.
(2)橋邊有一浮在水面部分高4m,最寬處12
2
m的魚船,試探索此船能否開到橋下?說明理由.

查看答案和解析>>

同步練習(xí)冊答案