【題目】在一個(gè)不透明的口袋里裝著只有顏色不同的黑、白兩種顏色的球共20只,某學(xué)習(xí)小組作摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù),下表示活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次數(shù)m | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的頻率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
請估算口袋中白球約是( )只.
A. 8 B. 9 C. 12 D. 13
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長為的正方形的頂點(diǎn)、分別在軸正半軸、軸的負(fù)半軸上,二次函數(shù)的圖象經(jīng)過、兩點(diǎn).
求該二次函數(shù)的頂點(diǎn)坐標(biāo);
結(jié)合函數(shù)的圖象探索:當(dāng)時(shí)的取值范圍;
設(shè),且,兩點(diǎn)都在該函數(shù)圖象上,試比較、的大小,并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形 ABCD 中,∠C=70°,∠B=∠D=90°,E、F 分別是 BC、DC 上的點(diǎn),當(dāng)△AEF 的周長最小時(shí),∠EAF 的度數(shù)為()
A.30°B.40°C.50°D.70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為大力弘揚(yáng)“奉獻(xiàn)、友愛、互助、進(jìn)步”的志愿服務(wù)精神,傳播“奉獻(xiàn)他人、提升自我”的志愿服務(wù)理念,東營市某中學(xué)利用周末時(shí)間開展了“助老助殘、社區(qū)服務(wù)、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個(gè)志愿服務(wù)活動(dòng)(每人只參加一個(gè)活動(dòng)),九年級某班全班同學(xué)都參加了志愿服務(wù),班長為了解志愿服務(wù)的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)求該班的人數(shù);
(2)請把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求扇形統(tǒng)計(jì)圖中,網(wǎng)絡(luò)文明部分對應(yīng)的圓心角的度數(shù);
(4)小明和小麗參加了志愿服務(wù)活動(dòng),請用樹狀圖或列表法求出他們參加同一服務(wù)活動(dòng)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=_______度;
(2)如圖2如果∠BAC=60°,則∠BCE=______度;
(3)設(shè)∠BAC=,∠BCE=.
①如圖3,當(dāng)點(diǎn)D在線段BC上移動(dòng),則之間有怎樣的數(shù)量關(guān)系?請說明理由;
②當(dāng)點(diǎn)D在直線BC上移動(dòng),請直接寫出之樣的數(shù)量關(guān)系,不用證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為解決偏遠(yuǎn)山區(qū)的學(xué)生飲水問題,某中學(xué)學(xué)生會(huì)號召同學(xué)們自愿捐款.已知七年級捐款總額為4800元,八年級捐款總額為5000元,八年級捐款人數(shù)比七年級多20人,而且兩個(gè)年級人均捐款數(shù)相等,請問七、八年級捐款的人數(shù)分別為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB為直徑,AC為弦.過BC延長線上一點(diǎn)G,作GD⊥AO于點(diǎn)D,交AC于點(diǎn)E,交⊙O于點(diǎn)F,M是GE的中點(diǎn),連接CF,CM.
(1)判斷CM與⊙O的位置關(guān)系,并說明理由;
(2)若∠ECF=2∠A,CM=6,CF=4,求MF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OBCD中的三個(gè)頂點(diǎn)在⊙O上,點(diǎn)A是優(yōu)弧BD上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B、D重合).
(1)當(dāng)圓心O在∠BAD內(nèi)部,∠ABO+∠ADO=50°時(shí),∠A = °;
(2)當(dāng)圓心O在∠BAD內(nèi)部,四邊形OBCD為平行四邊形時(shí),求∠C的度數(shù);
(3)當(dāng)圓心O在∠BAD外部,四邊形OBCD為平行四邊形時(shí),請直接寫出∠ABO與∠ADO的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com