【題目】觀察下列各式:①;②;③.
(1)根據(jù)你觀察、歸納、發(fā)現(xiàn)的規(guī)律,寫出可以是______的平方.
(2)試猜想寫出第個等式,并說明成立的理由.
(3)利用前面的規(guī)律,將改成完全平方的形式為:______.
【答案】(1)4025;(2),見解析;(3).
【解析】
(1)根據(jù)已知的三個等式,發(fā)現(xiàn)規(guī)律:等式左邊是序號數(shù)與比序號數(shù)大1的兩個正整數(shù)積的4倍與1的和,等式右邊是序號數(shù)與比序號數(shù)大1的兩個正整數(shù)的和的平方,由此得出4×2012×2013+1可以看成2012與2013這兩個正整數(shù)的和的平方;
(2)猜想第n個等式為4n(n+1)+1=(n+n+1)=(2n+1),運用多項式的乘法法則計算驗證即可;
(3)利用前面的規(guī)律,可知 =
(1)根據(jù)觀察、歸納、發(fā)現(xiàn)的規(guī)律,得到4×2012×2013+1=(2012+2013)=4025;
(2)猜想第n個等式為4n(n+1)+1=(2n+1),理由如下:
∵左邊=4n(n+1)+1=4n+4n+1,右邊=(2n+1)=4n+4n+1,
∴左邊=右邊,
∴4n(n+1)+1=(2n+1);
(3)利用前面的規(guī)律,可知
即
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有三個點,是的邊上一點,經(jīng)平移后得到,點的對應(yīng)點為.
(1)畫出平移后的,寫出點的坐標(biāo);
(2)的面積為_________________;
(3)若點是軸上一動點,的面積為,求與之間的關(guān)系式(用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,過點的直線,為邊上一動點(不與,重合),過點作,交直線于點,垂足為,連接,.
(1)求證:;
(2)當(dāng)移動到的什么位置時,四邊形是菱形?說明你的理由;
(3)若點移動到中點,則當(dāng)的大小滿足什么條件時,四邊形是正方形?請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x1、x2是一元二次方程2x2﹣7x+5=0的兩根,利用一元二次方程根與系數(shù)的關(guān)系,求下列各式的值.
(1)x12x2+x1x22; (2)(x1﹣x2)2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只貓頭鷹蹲在一棵樹AC的B(點B在AC上)處,發(fā)現(xiàn)一只老鼠躲進(jìn)短墻DF的另一側(cè),貓頭鷹的視線被短墻遮住,為了尋找這只老鼠,它又飛至樹頂C處,已知短墻高DF=4米,短墻底部D與樹的底部A的距離為2.7米,貓頭鷹從C點觀測F點的俯角為53°,老鼠躲藏處M(點M在DE上)距D點3米.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
(1)貓頭鷹飛至C處后,能否看到這只老鼠?為什么?
(2)要捕捉到這只老鼠,貓頭鷹至少要飛多少米(精確到0.1米)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,AD=2AB,F是AD的中點,作CE⊥AB,垂足E在線段AB上(E不與A、B重合),連接EF、CF,則下列結(jié)論中一定成立的是 ( )
①∠DCF=∠BCD;②EF=CF;③;④∠DFE=4∠AEF.
A. ①②③④ B. ①②③ C. ①② D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一般地,二元一次方程的解可以轉(zhuǎn)化為點的坐標(biāo),其中x的值對應(yīng)為點的橫坐標(biāo),y的值對應(yīng)為點的縱坐標(biāo),如二元一次方程x2y=0的解 和 可以轉(zhuǎn)化為點的坐標(biāo)A(0,0)和B(2,1).以方程x2y=0的解為坐標(biāo)的點的全體叫做方程x2y=0的圖象。
(1)寫出二元一次方程x2y=0的任意一組解___,并把它轉(zhuǎn)化為點C的坐標(biāo)___;
(2)在平面直角坐標(biāo)系中,任何一個二元一次方程的圖象都是一條直線,如方程x2y=0的圖象是由該方程所有的解轉(zhuǎn)化成的點組成,在圖中描出點A. 點B和點C,觀察它們是否在同一直線上;
(3)取滿足二元一次方程x+y=3的兩個解,并把它們轉(zhuǎn)化成點的坐標(biāo),畫出二元一次方程x+y=3的圖象;
(4)根據(jù)圖象,寫出二元一次方程x2y=0的圖象和二元一次方程x+y=3的圖象的交點坐標(biāo)___,由此可得二元一次方程組 的解是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4cm,AD=5cm,點E在AD上,且AE=3cm,點P、Q同時從點B出發(fā),點P沿BE→ED→DC運動到點C停止,點Q沿BC運動到點C停止,它們的運動速度都是1cm/s,設(shè)P、Q出發(fā)t秒,△BPQ的面積為y cm2.則y與t的函數(shù)關(guān)系圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八(1)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊各10人的比賽成績?nèi)缦卤恚?/span>
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲隊成績的中位數(shù)是 分,乙隊成績的眾數(shù)是 分;
(2)計算乙隊的方差;
(3)已知甲隊成績的方差是1.4,則成績較為整齊的是 隊.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com