【題目】矩形的一角平分線分一邊為 3cm 4cm 兩部分,則這個(gè)矩形的對角線的長為_____

【答案】

【解析】

存在2種情況,被分的邊長為3cm4cm4cm、3cm,然后再利用正方形的性質(zhì)得到矩形另一邊長,最后用勾股股定理求得斜邊長.

情況一:如下圖,四邊形ABCD是矩形,BE是∠ABC的角平分線,AE=3cm,ED=4cm,連接BD

BE是∠ABC的角平分線,四邊形ABCD是矩形

∴∠ABE=45°,∠A=90°

∴△ABE是等腰直角三角形

AE=3cm,∴AB=3cm=DC

RtDCB中,BC=7cmDC=3cm,∴BD=

情況二:如下圖,四邊形ABCD是矩形,BE是∠ABC的角平分線,AE=4cm,ED=3cm,連接BD

同理,AE=4cm,∴AB=4cm=DC

RtDCB中,BC=7cmDC=4cm,∴BD=

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中是真命題的是( )

A.中位數(shù)就是一組數(shù)據(jù)中最中間的一個(gè)數(shù)

B.這組數(shù)據(jù)0,23,34,6的方差是2.1

C.一組數(shù)據(jù)的標(biāo)準(zhǔn)差越大,這組數(shù)據(jù)就越穩(wěn)定

D.如果的平均數(shù)是,那么

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1ABCD,求∠A+AEC+C的度數(shù).

解:過點(diǎn)EEFAB

EFAB(已作)

∴∠A+AEF=180°______

又∵ABCD(已知)

EFCD______

∴∠CEF+______=180°(兩直線平行,同旁內(nèi)角互補(bǔ))

∴∠A+AEF+CEF+C=360°(等式性質(zhì))

即∠A+AEC+C=______

2)根據(jù)上述解題及作輔助線的方法,在圖2中,ABEF,則∠B+C+D+E=______

3)根據(jù)(1)和(2)的規(guī)律,圖3ABGF,猜想:∠B+C+D+E+F=______

4)如圖4,ABCD,在B,D兩點(diǎn)的同一側(cè)有M1,M2M3,Mnn個(gè)折點(diǎn),則∠B+M1+M2+…+Mn+D的度數(shù)為______(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+2ax+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊)AB=4,與y軸交于點(diǎn)C,OC=OA,點(diǎn)D為拋物線的頂點(diǎn).

(1)求拋物線的解析式;

(2)點(diǎn)M(m,0)為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)Q作QN⊥x軸于點(diǎn)N,可得矩形PQNM,如圖1,點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQNM的周長最大時(shí),求m的值,并求出此時(shí)的△AEM的面積;

(3)已知H(0,﹣1),點(diǎn)G在拋物線上,連HG,直線HG⊥CF,垂足為F,若BF=BC,求點(diǎn)G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以正方形ABCD的邊AB為一邊向外作等邊ABE,則BED的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:BCOA,∠B=A=120°,試回答下列問題:

(1)如圖1所示,求證:OBAC;

(2)如圖2,若點(diǎn)E、FBC上,且滿足∠FOC=AOC,并且OE平分∠BOF,則∠EOC的度數(shù)是______;

(3)(2)的條件下,若平行移動AC,其它條件不變,如圖3,則∠OCB:∠OFB的值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知△ABC中,P是邊AB上的一點(diǎn),連接CP.

(1)要使△ACP∽△ABC,還需要補(bǔ)充的一個(gè)條件是_____

2)若△ACP∽△ABC,且AC=,AB=3,求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了了解學(xué)生每天完成家庭作業(yè)所用時(shí)間的情況,從每班抽取相同數(shù)量的學(xué)生進(jìn)行調(diào)查,并將所得數(shù)據(jù)進(jìn)行整理,制成條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,如圖所示:

(1)補(bǔ)全條形統(tǒng)計(jì)圖;

(2)求扇形統(tǒng)計(jì)圖中扇形D的圓心角的度數(shù);

(3)若該中學(xué)有2000名學(xué)生,請估計(jì)其中有多少名學(xué)生能在1.5 h內(nèi)完成家庭作業(yè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】519,中國首個(gè)旅游日正式啟動某校組織了由八年級800名學(xué)生參加的旅游地理知識競賽.李老師為了了解對旅游地理知識的掌握情況,從中隨機(jī)抽取了部分同學(xué)的成績作為樣本把成績按優(yōu)秀、良好、及格、不及格4個(gè)級別進(jìn)行統(tǒng)計(jì),并繪制成了如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖部分信息未給出).

請根據(jù)以上提供的信息,解答下列問題

1求被抽取的部分學(xué)生的人數(shù);

2請補(bǔ)全條形統(tǒng)計(jì)圖,并求出扇形統(tǒng)計(jì)圖中表示及格的扇形的圓心角度數(shù)

3請估計(jì)八年級的800名學(xué)生中達(dá)到良好和優(yōu)秀的總?cè)藬?shù)

查看答案和解析>>

同步練習(xí)冊答案