【題目】已知拋物線C:y1=﹣x2+bx+4.
(1)如圖,拋物線與x軸相交于兩點(1﹣m,0)、(1+m,0).
①求b的值;
②當n≤x≤n+1時,二次函數(shù)有最大值為3,求n的值.
(2)已知直線l:y2=2x﹣b+9,當x≥0時,y1≤y2恒成立,求b的取值范圍.
【答案】(1)b=2;(2)或;(3)b≤4.
【解析】
(1)由根與系數(shù)的關系得出x1+x2=-b,由拋物線與x軸的交點即為方程值為0的解,再將兩個代入x1+x2=-b即可得到b的值.;
(2)需要分情況討論,當n+1≤1,即n≤0;當n≤1≤n+1,即0≤n≤1;或n≥1三種情況,分別求解即可;
(3)將y1=﹣x2+bx+4,y2=2x﹣b+9代入y1≤y2整理得到x2+(2﹣b)x+5﹣b≥0,題意告知對于當x≥0時x2+(2﹣b)x+5﹣b≥0恒成立,故需分下面兩種情況求解:①:△≤0,(2-b)2-4(5-b)≤0;②:△>0,則b>4或b<-4,即可求解.
解:(1)﹣x2+bx+4=0
,
b=2;
(2)拋物線開口向下,對稱軸左側y隨x的增大而增大;對稱軸右側,y隨x的增大而減。
i:n+1≤1即n≤0,
當x=n+1時,y有最大值,
,
又∵n≤0,∴,
ii:n≤1≤n+1即0≤n≤1,
當x=1時y有最大值,
﹣12+2<1+4=3不成立,
iii:n≥1時,
當x=n時,y有最大值,
,
又∵n≥1,
∴,
綜上所述:或;
(3)y1≤y2,
﹣x2+bx+4≤2x﹣b+9,
x2+(2﹣b)x+5﹣b≥0,
①:△≤0,
(2﹣b)2﹣4(5﹣b)≤0,
﹣4≤b≤4;
②:△>0則b>4或b<﹣4,
i:,不成立,
ii:,
b≤2,
又∵b>4或b<﹣4,
∴b<﹣4,
綜上所述b≤4.
科目:初中數(shù)學 來源: 題型:
【題目】為了豐富校園文化生活,提高學生的綜合素質,促進中學生全面發(fā)展,學校開展了多種社團活動.小明喜歡的社團有:合唱社團、足球社團、書法社團、科技社團(分別用字母A,B,C,D依次表示這四個社團),并把這四個字母分別寫在四張完全相同的不透明的卡片的正面上,然后將這四張卡片背面朝上洗勻后放在桌面上.
(1)小明從中隨機抽取一張卡片是足球社團B的概率是 .
(2)小明先從中隨機抽取一張卡片,記錄下卡片上的字母后不放回,再從剩余的卡片中隨機抽取一張卡片,記錄下卡片上的字母.請你用列表法或畫樹狀圖法求出小明兩次抽取的卡片中有一張是科技社團D的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將圖中的A型、B型、C型矩形紙片分別放在3個盒子中,盒子的形狀、大小、質地都相同,再將這3個盒子裝入一只不透明的袋子中.
(1)攪勻后從中摸出1個盒子,求摸出的盒子中是型矩形紙片的概率;
(2)攪勻后先從中摸出1個盒子(不放回),再從余下的兩個盒子中摸出一個盒子,求2次摸出的盒子的紙片能拼成一個新矩形的概率(不重疊無縫隙拼接).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠C=90°,AC=6,BC=8,點E、F分別是邊AC、BC上的動點,且EF//AB,點C關于EF的對稱點D恰好落在△ABC的內角平分線上,則CD長為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在半徑為,圓心角等于45°的扇形AOB內部作一個矩形CDEF,使點C在OA上,點D、E在OB上,點F在弧AB上,且DE=2CD,則:
(1)弧AB的長是(結果保留π)________;
(2)圖中陰影部分的面積為(結果保留π)________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=+4與x軸、y軸分別交于A、B兩點,把△AOB繞點A順時針旋轉90°后得到△AO′B′,則點B′的坐標是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】襄陽市精準扶貧工作已進入攻堅階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質水果藍莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴大銷量,采取了降價措施,以后每天比前一天多賣出4千克.第x天的售價為y元/千克,y關于x的函數(shù)解析式為 且第12天的售價為32元/千克,第26天的售價為25元/千克.已知種植銷售藍莓的成木是18元/千克,每天的利潤是W元(利潤=銷售收入﹣成本).
(1)m= ,n= ;
(2)求銷售藍莓第幾天時,當天的利潤最大?最大利潤是多少?
(3)在銷售藍莓的30天中,當天利潤不低于870元的共有多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在8×6的方格紙ABCD中,AB=6,每個小方格紙的頂點為格點,請按要求畫出格點多邊形,且所畫格點多邊形的頂點均不與點A,B,C,D重合.
(1)在圖1中畫一個格點三角形EFG,使得點E,F,G分別在AB,BC,AD上,且∠EFG=90°,
(2)在圖2中畫一個四邊形EFGH,使點F為邊BC的中點,E,G,H分別落在邊AB,CD,DA上,且EG⊥FH,∠AEG≠90°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著疫情的有效控制我省百大項目之一的哈爾濱地鐵“二號線三號線”全面復工修建,建設方通過合理化地施工設計,加大適當?shù)耐度雭韽浹a前期耽誤的工作量,以保證今年修建目標的實現(xiàn)。修建過程中有大量的殘土需要運輸。某車隊有載重量為8噸、10噸的卡車共12輛,全部車輛運輸一次可以運輸110噸殘土.
(1)求該車隊有載重量為8噸、10噸的卡車各多少輛?
(2)隨著工程的進展,該車隊需要一次運輸殘土不低于165噸,為了完成任務,該車隊準備新購進這兩種卡車共6輛,則最多購進載重量為8噸的卡車多少輛?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com