矩形紙片ABCD中,已知AD=8,AB=6,E是邊BC上的點,以AE為折痕折疊紙片,使點B落在點F處,連接FC,當(dāng)△EFC為直角三角形時,BE的長為
3或6 .
解:①∠EFC=90°時,如圖1,
∵∠AFE=∠B=90°,∠EFC=90°,
∴點A、F、C共線,
∵矩形ABCD的邊AD=8,
∴BC=AD=8,
在Rt△ABC中,AC===10,
設(shè)BE=x,則CE=BC﹣BE=8﹣x,
由翻折的性質(zhì)得,AF=AB=6,EF=BE=x,
∴CF=AC﹣AF=10﹣6=4,
在Rt△CEF中,EF2+CF2=CE2,
即x2+42=(8﹣x)2,
解得x=3,
即BE=3;
②∠CEF=90°時,如圖2,
由翻折的性質(zhì)得,∠AEB=∠AEF=×90°=45°,
∴四邊形ABEF是正方形,
∴BE=AB=6,
綜上所述,BE的長為3或6.
故答案為:3或6.
科目:初中數(shù)學(xué) 來源: 題型:
已知關(guān)于x的方程mx2﹣(m+2)x+2=0(m≠0).
(1)求證:方程總有兩個實數(shù)根;
(2)若方程的兩個實數(shù)根都是整數(shù),求正整數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將矩形ABCD沿EF折疊,使頂點C恰好落在AB邊的中點C′上.若AB=6,BC=9,則BF的長為( 。
| A. | 4 | B. | 3 | C. | 4.5 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
數(shù)學(xué)問題:計算+++…+(其中m,n都是正整數(shù),且m≥2,n≥1).
探究問題:為解決上面的數(shù)學(xué)問題,我們運用數(shù)形結(jié)合的思想方法,通過不斷地分割一個面積為1的正方形,把數(shù)量關(guān)系和幾何圖形巧妙地結(jié)合起來,并采取一般問題特殊化的策略來進(jìn)行探究.
探究一:計算+++…+.
第1次分割,把正方形的面積二等分,其中陰影部分的面積為;
第2次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,陰影部分的面積之和為+;
第3次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,…;
…
第n次分割,把上次分割圖中空白部分的面積最后二等分,所有陰影部分的面積之和為+++…+,最后空白部分的面積是.
根據(jù)第n次分割圖可得等式:+++…+=1﹣.
探究二:計算+++…+.
第1次分割,把正方形的面積三等分,其中陰影部分的面積為;
第2次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,陰影部分的面積之和為+;
第3次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,…;
…
第n次分割,把上次分割圖中空白部分的面積最后三等分,所有陰影部分的面積之和為+++…+,最后空白部分的面積是.
根據(jù)第n次分割圖可得等式:+++…+=1﹣,
兩邊同除以2,得+++…+=﹣.
探究三:計算+++…+.
(仿照上述方法,只畫出第n次分割圖,在圖上標(biāo)注陰影部分面積,并寫出探究過程)
解決問題:計算+++…+.
(只需畫出第n次分割圖,在圖上標(biāo)注陰影部分面積,并完成以下填空)
根據(jù)第n次分割圖可得等式: +++…+=1﹣ ,
所以,+++…+= ﹣ .
拓廣應(yīng)用:計算 +++…+.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,過點O作直線與雙曲線y=(k≠0)交于A、B兩點,過點B作BC⊥x軸于點C,作BD⊥y軸于點D.在x軸上分別取點E、F,使點A、E、F在同一條直線上,且AE=AF.設(shè)圖中矩形ODBC的面積為S1,△EOF的面積為S2,則S1、S2的數(shù)量關(guān)系是( 。
| A. | S1=S2 | B. | 2S1=S2 | C. | 3S1=S2 | D. | 4S1=S2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在一條筆直的公路旁依次有A、B、C三個村莊,甲、乙兩人同時分別從A、B兩村出發(fā),甲騎摩托車,乙騎電動車沿公路勻速駛向C村,最終到達(dá)C村.設(shè)甲、乙兩人到C村的距離y1,y2(km)與行駛時間x(h)之間的函數(shù)關(guān)系如圖所示,請回答下列問題:
(1)A、C兩村間的距離為 km,a= ;
(2)求出圖中點P的坐標(biāo),并解釋該點坐標(biāo)所表示的實際意義;
(3)乙在行駛過程中,何時距甲10km?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com