【題目】如圖,在平面直角坐標系中,正方形的頂點與坐標原點重合,其邊長為2,點,點分別在軸, 軸的正半軸上.函數(shù)的圖像與交于點,函數(shù)為常數(shù), )的圖像經(jīng)過點,與交于點,與函數(shù)的圖像在第三象服內(nèi)交于點,連接.
(1)求函數(shù)的表達式,并直接寫出兩點的坐標;
(2)求的面積.
【答案】(1)函數(shù)的表達式: , ;(2) 的面積為.
【解析】【試題分析】(1)先求出點D得坐標,再代入反比例函數(shù)解析式即可;(2)
把AE看成底邊,把F到AE的距離看成AE 邊上的高,利用三角形面積公式求解即可.
【試題解析】
(1)由題意得:C(0,2),D的縱坐標為2,代入,得x=1,故D(1,2),將D(1,2)代入,得, ;由于點E的橫坐標為2,代入反比函數(shù),則x=1,故E(2,1);因為點D與F關(guān)于原點對稱,故F(-1,-2);
(2)把AE看成底邊,長度為1,把F到AE的距離看成AE 邊上的高,長度3,S= .
故答案:(1)函數(shù)的表達式: , ;(2) 的面積為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E,F分別是AB,CD上的點,點G是BC的延長線上一點,且∠B=∠DCG=∠D,則下列判斷中,錯誤的是( )
A. ∠AEF=∠EFC B. ∠A=∠BCF C. ∠AEF=∠EBC D. ∠BEF+∠EFC=180°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一副含 和 角的三角板 和 疊合在一起,邊 與 重合, (如圖1),點 為邊 的中點,邊 與 相交于點 ,此時線段 的長是 . 現(xiàn)將三角板 繞點 按順時針方向旋轉(zhuǎn)(如圖2),在 從 到 的變化過程中,點 相應(yīng)移動的路徑長共為 . (結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了考察甲、乙兩種成熟期小麥的株高長勢情況,現(xiàn)從中隨機抽取6株,并測得它們的株高(單位:cm)如下表所示:
甲 | 63 | 66 | 63 | 61 | 64 | 61 |
乙 | 63 | 65 | 60 | 63 | 64 | 63 |
(Ⅰ)請分別計算表內(nèi)兩組數(shù)據(jù)的方差,并借此比較哪種小麥的株高長勢比較整齊?
(Ⅱ)現(xiàn)將進行兩種小麥優(yōu)良品種雜交實驗,需從表內(nèi)的甲、乙兩種小麥中,各隨機抽取一株進行配對,以預(yù)估整體配對情況,請你用列表法或畫樹狀圖的方法,求所抽取的兩株配對小麥株高恰好都等于各自平均株高的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,CD被EF所截,點G,H為它們的交點,∠1∶∠2=5∶3,∠2與它的內(nèi)錯角相等,HP平分∠CHG.求:
(1)∠4的度數(shù);
(2)∠CHP的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,四邊形OABC是長方形,點A、C的坐標分別為A(10,0 ),C(0,4),點D是OA的中點,點P在BC邊上運動,當△ODP是腰長為5的等腰三角形時,點P的坐標為( )
A. (3,4),(2,4) B. (3,4),(2,4),(8,4)
C. (2,4),(8,4) D. (3,4),(2,4),(8,4),(2.5,4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,B兩點在數(shù)軸上對應(yīng)的數(shù)分別為a,b,且點A在點B的左邊,|a|=10,a+b=80,ab<0.
(1)求出a,b的值;
(2)現(xiàn)有一只電子螞蟻P從點A出發(fā),以3個單位長度/秒的速度向右運動,同時另一只電子螞蟻Q從點B出發(fā),以2個單位長度/秒的速度向左運動.
①設(shè)兩只電子螞蟻在數(shù)軸上的點C相遇,求出點C對應(yīng)的數(shù)是多少?
②經(jīng)過多長時間兩只電子螞蟻在數(shù)軸上相距20個單位長度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知菱形ABCD中,DE⊥AB于點E,DE = 4cm,∠A =45°,求菱形ABCD的面積和梯形DEBC的中位線長(精確到0.1cm)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com