高一新生入學(xué)軍訓(xùn)射擊訓(xùn)練中,小張同學(xué)的射擊成績(單位:環(huán))為:5、7、9、10、7,則這組數(shù)據(jù)的眾數(shù)是
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,∠AOC的平分線交AB于點(diǎn)D,E為BC的中點(diǎn),已知A(0,4)、C(5,0),二次函數(shù)y=x2+bx+c的圖象拋物線經(jīng)過A,C兩點(diǎn).
(1)求該二次函數(shù)的表達(dá)式;
(2)F、G分別為x軸,y軸上的動點(diǎn),順次連接D、E、F、G構(gòu)成四邊形DEFG,求四邊形DEFG周長的最小值;
(3)拋物線上是否在點(diǎn)P,使△ODP的面積為12?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,反比例函數(shù)y=的圖像與一次函數(shù)y=x的圖像交于點(diǎn)A、B,點(diǎn)B的橫坐標(biāo)是4.點(diǎn)P是第一象限內(nèi)反比例函數(shù)圖像上的動點(diǎn),且在直線AB的上方.
⑴若點(diǎn)P的坐標(biāo)是(1,4),直接寫出k的值和△PAB的面積;
⑵設(shè)直線PA、PB與x軸分別交于點(diǎn)M、N,求證:△PMN是等腰三角形;
⑶設(shè)點(diǎn)Q是反比例函數(shù)圖像上位于P、B之間的動點(diǎn)(與點(diǎn)P、B不重合),連接AQ、BQ,比較∠PAQ與∠PBQ的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,若∠DAB=60°,則∠BCD的度數(shù)是( 。
| A. | 60° | B. | 90° | C. | 100° | D. | 120° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
閱讀材料:用配方法求最值.
已知x,y為非負(fù)實(shí)數(shù),
∵x+y﹣2≥0
∴x+y≥2,當(dāng)且僅當(dāng)“x=y”時,等號成立.
示例:當(dāng)x>0時,求y=x++4的最小值.+4=6,當(dāng)x=,即x=1時,y的最小值為6.
(1)嘗試:當(dāng)x>0時,求y=的最小值.
(2)問題解決:隨著人們生活水平的快速提高,小轎車已成為越來越多家庭的交通工具,假設(shè)某種小轎車的購車費(fèi)用為10萬元,每年應(yīng)繳保險費(fèi)等各類費(fèi)用共計(jì)0.4萬元,n年的保養(yǎng)、維護(hù)費(fèi)用總和為萬元.問這種小轎車使用多少年報(bào)廢最合算(即:使用多少年的年平均費(fèi)用最少,年平均費(fèi)用=)?最少年平均費(fèi)用為多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知E、F、G、H分別為菱形ABCD四邊的中點(diǎn),AB=6cm,∠ABC=60°,則四邊形EFGH的面積為 cm2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com