【題目】榮慶公司計(jì)劃從商店購買同一品牌的臺(tái)燈和手電筒,已知購買一個(gè)臺(tái)燈比購買一個(gè)手電筒多用20元,若用400元購買臺(tái)燈和用160元購買手電筒,則購買臺(tái)燈的個(gè)數(shù)是購買手電筒個(gè)數(shù)的一半.
(1)求購買該品牌一個(gè)臺(tái)燈、一個(gè)手電筒各需要多少元?
(2)經(jīng)商談,商店給予榮慶公司購買一個(gè)該品牌臺(tái)燈贈(zèng)送一個(gè)該品牌手電筒的優(yōu)惠,如果榮慶公司需要手電筒的個(gè)數(shù)是臺(tái)燈個(gè)數(shù)的2倍還多8個(gè),且該公司購買臺(tái)燈和手電筒的總費(fèi)用不超過670元,那么榮慶公司最多可購買多少個(gè)該品牌臺(tái)燈?
【答案】(1)購買一個(gè)臺(tái)燈需要25元,購買一個(gè)手電筒需要5元;
(2)榮慶公司最多可購買21個(gè)該品牌的臺(tái)燈.
【解析】
試題(1)設(shè)購買該品牌一個(gè)手電筒需要x元,則購買一個(gè)臺(tái)燈需要(x+20)元.則根據(jù)等量關(guān)系:購買臺(tái)燈的個(gè)數(shù)是購買手電筒個(gè)數(shù)的一半,列出方程;
(2)設(shè)公司購買臺(tái)燈的個(gè)數(shù)為a各,則還需要購買手電筒的個(gè)數(shù)是(2a+8)個(gè),則根據(jù)“該公司購買臺(tái)燈和手電筒的總費(fèi)用不超過670元”列出不等式.
試題解析:(1)設(shè)購買該品牌一個(gè)手電筒需要x元,則購買一個(gè)臺(tái)燈需要(x+20)元.
根據(jù)題意 得
解得 x=5
經(jīng)檢驗(yàn),x=5是原方程的解.
所以 x+20=25.
答:購買一個(gè)臺(tái)燈需要25元,購買一個(gè)手電筒需要5元;
(2)設(shè)公司購買臺(tái)燈的個(gè)數(shù)為a,則還需要購買手電筒的個(gè)數(shù)是(2a+8)
由題意得 25a+5(2a+8)≤670
解得 a≤21
所以 榮慶公司最多可購買21個(gè)該品牌的臺(tái)燈.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠BAC=120°,D 為 BC 的中點(diǎn),DE⊥AC 于點(diǎn) E,AE=8,求 CE 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,E為AD的中點(diǎn),F(xiàn)為BC邊上一動(dòng)點(diǎn),設(shè)BF=t(0≤t≤2),線段EF的垂直平分線GH分別交邊CD,AB于點(diǎn)G,H,過E做EM⊥BC于點(diǎn)M,過G作GN⊥AB于點(diǎn)N.
(1)當(dāng)t≠2時(shí),求證:△EMF≌△GNH;
(2)順次連接E、H、F、G,設(shè)四邊形EHFG的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開始,先向右移動(dòng)3個(gè)單位長度,再向左移動(dòng)5個(gè)單位長度,可以看到終點(diǎn)表示的數(shù)是-2,已知點(diǎn)A,B是數(shù)軸上的點(diǎn),請(qǐng)參照?qǐng)D并思考,完成下列各題.
(1)如果點(diǎn)A表示數(shù)-3,將點(diǎn)A向右移動(dòng)7個(gè)單位長度,那么終點(diǎn)B表示的數(shù)是_____,A,B兩點(diǎn)間的距離是_____;
(2)如果點(diǎn)A表示數(shù)3,將A點(diǎn)向左移動(dòng)7個(gè)單位長度,再向右移動(dòng)5個(gè)單位長度,那么終點(diǎn)表示的數(shù)是_____,A,B兩點(diǎn)間的距離為_____;
(3)如果點(diǎn)A表示數(shù)-4,將A點(diǎn)向右移動(dòng)168個(gè)單位長度,再向左移動(dòng)256個(gè)單位長度,那么終點(diǎn)B表示的數(shù)是_____,A、B兩點(diǎn)間的距離是_____;
(4)一般地,如果A點(diǎn)表示的數(shù)為m,將A點(diǎn)向右移動(dòng)n個(gè)單位長度,再向左移動(dòng)p個(gè)單位長度,那么請(qǐng)你猜想終點(diǎn)B表示什么數(shù)?A,B兩點(diǎn)間的距離為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC三個(gè)內(nèi)角的平分線交于點(diǎn)O,點(diǎn)D在CA的延長線上,且DC=BC,AD=AO,若∠BAC=80°,則∠BCA的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,BE⊥AE,延長AE交BC的延長線于點(diǎn)F.
求證:(1)FC=AD;
(2)AB=BC+AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x與反比例函數(shù)y= (k≠0,x>0)的圖象交于點(diǎn)A(1,a),B是反比例函數(shù)圖象上一點(diǎn),直線OB與x軸的夾角為α,tanα= .
(1)求k的值.
(2)求點(diǎn)B的坐標(biāo).
(3)設(shè)點(diǎn)P(m,0),使△PAB的面積為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為△ABC的中線,BE為△ABD的中線,
(1)若∠ABE=25°,∠BAD=50°,則∠BED的度數(shù)是 度.
(2)在△ADC中過點(diǎn)C作AD邊上的高CH.
(3)若△ABC的面積為60,BD=5,求點(diǎn)E到BC邊的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,把直角三角形紙片沿過頂點(diǎn)B的直線(BE交CA于E)折疊,直角頂點(diǎn)C落在斜邊AB上,如果折疊后得等腰△EBA,那么結(jié)論中:①∠A=30°;②點(diǎn)C與AB的中點(diǎn)重合;③點(diǎn)E到AB的距離等于CE的長,正確的個(gè)數(shù)是( 。
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com