【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),AB=,點(diǎn)A在y軸上,反比例函數(shù)經(jīng)過點(diǎn)B,求反比例函數(shù)解析式______.
【答案】
【解析】
過點(diǎn)B作BD⊥x軸于點(diǎn)D,在Rt△ABC中利用勾股定理求出AC的長,在Rt△OAC中利用勾股定理求出OA的長,然后證明△OAC≌DCB,可得BD,CD的長,即可得點(diǎn)B的坐標(biāo),最后利用待定系數(shù)法即可求出反比例函數(shù)的解析式.
解:過點(diǎn)B作BD⊥x軸于點(diǎn)D,
在Rt△ABC中,AC=BC,AB=,
由勾股定理可得AC=BC=2,
∵點(diǎn)C的坐標(biāo)為(1,0),
∴OC=1,
在Rt△OAC中,
OA===.
∵∠OCA+∠DCB=90°,∠OCA+∠OAC=90°,
∴∠OAC=∠DCB,
在△OAC和△DCB中,
,
∴△OAC≌△DCB,
∴CD=OA=,BD=OC=1,
∴OD=CD+OC=+1,
即點(diǎn)B的坐標(biāo)為(+1,1).
設(shè)反比例函數(shù)的解析式為y=,
則1=,
解得k=+1,
所以反比例函數(shù)的解析式為y=.
故答案為:y=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A,對(duì)點(diǎn)A作如下變換:
第一步:作點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A1;第二步:以O為位似中心,作線段OA1的位似圖形OA2,且相似比=q,則稱A2是點(diǎn)A的對(duì)稱位似點(diǎn).
(1)若A(2,3),q=2,直接寫出點(diǎn)A的對(duì)稱位似點(diǎn)的坐標(biāo);
(2)已知直線l:y=kx-2,拋物線C:y=-x2+mx-2(m>0).點(diǎn)N(,2k-2)在直線l上.
①當(dāng)k=時(shí),判斷E(1,-1)是否是點(diǎn)N的對(duì)稱位似點(diǎn),請(qǐng)說明理由;
②若直線l與拋物線C交于點(diǎn)M(x1,y1)(x1≠0),且點(diǎn)M不是拋物線的頂點(diǎn),則點(diǎn)M的對(duì)稱位似點(diǎn)是否可能仍在拋物線C上?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了美化城市環(huán)境,某街道重修了路面,準(zhǔn)備將老舊的路燈換成LED太陽能路燈,計(jì)劃購買海螺臂和A字臂兩種型號(hào)的太陽能路燈共100只,經(jīng)過市場(chǎng)調(diào)查:購買海螺臂太陽能路燈1只,A字臂太陽能路燈2只共需2300元;購買海螺臂太陽能路燈3只,A字臂太陽能路燈4只共需5400元.
(1)求海螺臂太陽能路燈和A字臂太陽能路燈的單價(jià):
(2)在實(shí)際購買時(shí),恰逢商家活動(dòng),購買海螺臂太陽能路燈超過20只時(shí),超過的部分打九折優(yōu)惠,A字臂太陽能路燈全部打八折優(yōu)惠;若規(guī)定購買的海螺臂太陽能路燈的數(shù)量不少于A字臂太陽能路燈的數(shù)量的一半,請(qǐng)你設(shè)計(jì)一種購買方案,使得總費(fèi)用最少,并求出最小總費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為4,P為BC邊上的動(dòng)點(diǎn),連接AP,作PQ⊥PA交CD邊于點(diǎn)Q.當(dāng)點(diǎn)P從B運(yùn)動(dòng)到C時(shí),線段AQ的中點(diǎn)M所經(jīng)過的路徑長( 。
A. 2 B. 1 C. 4 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市A,B兩個(gè)蔬菜基地得知四川C,D兩個(gè)災(zāi)民安置點(diǎn)分別急需蔬菜240t和260t的消息后,決定調(diào)運(yùn)蔬菜支援災(zāi)區(qū),已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,現(xiàn)將這些蔬菜全部調(diào)運(yùn)C,D兩個(gè)災(zāi)區(qū)安置點(diǎn).從A地運(yùn)往C,D兩處的費(fèi)用分別為每噸20元和25元,從B地運(yùn)往C,D兩處的費(fèi)用分別為每噸15元和18元.設(shè)從B地運(yùn)往C處的蔬菜為x噸.
(1)請(qǐng)?zhí)顚懴卤恚⑶髢蓚(gè)蔬菜基地調(diào)運(yùn)蔬菜的運(yùn)費(fèi)相等時(shí)x的值;
C | D | 總計(jì)/t | |
A | 200 | ||
B | x | 300 | |
總計(jì)/t | 240 | 260 | 500 |
(2)設(shè)A,B兩個(gè)蔬菜基地的總運(yùn)費(fèi)為w元,求出w與x之間的函數(shù)關(guān)系式,并求
總運(yùn)費(fèi)最小的調(diào)運(yùn)方案;
(3)經(jīng)過搶修,從B地到C處的路況得到進(jìn)一步改善,縮短了運(yùn)輸時(shí)間,運(yùn)費(fèi)每噸減少m元(m>0),其余線路的運(yùn)費(fèi)不變,試討論總運(yùn)費(fèi)最小的調(diào)動(dòng)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】立定跳遠(yuǎn)是體育中考選考項(xiàng)目之一,體育課上老師記錄了某同學(xué)的一組立定跳遠(yuǎn)成績?nèi)绫恚?/span>
成績(m) | 2.3 | 2.4 | 2.5 | 2.4 | 2.4 |
則下列關(guān)于這組數(shù)據(jù)的說法,正確的是( 。
A.眾數(shù)是2.3B.平均數(shù)是2.4
C.中位數(shù)是2.5D.方差是0.01
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D在⊙O上,過點(diǎn)D的切線交直徑AB的延長線于點(diǎn)P,DC⊥AB于點(diǎn)C.
(1)求證:DB平分∠PDC;
(2)如果DC = 6,,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,是直徑,點(diǎn)是上一點(diǎn),點(diǎn)是的中點(diǎn),于點(diǎn),過點(diǎn)的切線交的延長線于點(diǎn),連接,分別交于點(diǎn),連接,交于下列結(jié)論:
①;
②;
③點(diǎn)是的外心,
④
其中正確結(jié)論是_________________(只需填寫序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=ax2+bx+3=0(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C
(1)求拋物線的解析式;
(2)設(shè)拋物線的對(duì)稱軸與x軸交于點(diǎn)M,請(qǐng)問在對(duì)稱軸上是否存在點(diǎn)P,使△CMP為等腰三角形?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com