如圖,已知⊙O是△ABC的內(nèi)切圓,切點(diǎn)為D、EF,如果AE=2,CD=1,BF=3,則內(nèi)切圓的半徑r         
1
根據(jù)切線長(zhǎng)定理得出AF=AE,EC=CD,DB=BF,進(jìn)而得出△ABC是直角三角形,再利用直角三角形內(nèi)切圓半徑求法得出內(nèi)切圓半徑即可.
解:∵⊙O是△ABC的內(nèi)切圓,切點(diǎn)為D、E、F,
∴AF=AE,EC=CD,DB=BF,
∵AE=2,CD=1,BF=3,
∴AF=2,EC=1,BD=3,
∴AB=BF+AF=3+2=5,BC=BD+DC=4,AC=AE+EC=3,
∴△ABC是直角三角形,
∴內(nèi)切圓的半徑r==1,
故答案為:1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

圖是一個(gè)“慶祝國(guó)慶60周年”的圖標(biāo),圖標(biāo)中兩圓的位置關(guān)系不存在的是
 
A.外離B.相交C.外切D.內(nèi)含

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知⊙和⊙的半徑分別是12和2,圓心的坐標(biāo)是(0,8),圓心的坐標(biāo)是(-6,0),則兩圓的位置關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知⊙O上有兩點(diǎn)A、B,且圓心角∠AOB=40°,則劣弧AB的度數(shù)為_(kāi)_____ °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正方形網(wǎng)格中,一條圓弧經(jīng)過(guò)AB,C三點(diǎn),那么這條圓弧所在圓的圓心是
A.點(diǎn)PB.點(diǎn)QC.點(diǎn)R D.點(diǎn)M

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一天,媽媽問(wèn)兒子今天打球時(shí)間有多長(zhǎng)。兒子淘氣地說(shuō):“我打球時(shí)鐘表的時(shí)針轉(zhuǎn)動(dòng)了!蹦敲矗瑩(jù)此你判斷兒子打球所用的時(shí)間應(yīng)是()
A.30分鐘B.60分鐘C.90分鐘D.120分鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

( 10分)如圖,AB是⊙O的直徑,CD是⊙O的切線,切點(diǎn)為C.延長(zhǎng)ABCD于點(diǎn)E.連接AC,作∠DAC=∠ACD,作AFED于點(diǎn)F,交⊙O于點(diǎn)G
(1)  求證:AD是⊙O的切線;
(2)  如果⊙O的半徑是6cm,EC=8cm,求GF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分7分)如圖,在⊙O中,AB是直徑,AD是弦,∠ADE = 60°,∠C = 30°.
(1)判斷直線CD是否是⊙O的切線,并說(shuō)明理由;
(2)若CD =  ,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題12分)如圖,在平面直角坐標(biāo)系中,矩形ABCO的面積為15,邊OAOC大2.EBC的中點(diǎn),以OE為直徑的⊙Gx軸于D點(diǎn),過(guò)點(diǎn)DDFAE于點(diǎn)F
(1)求OAOC的長(zhǎng);
(2)求證:DF為⊙G的切線;
(3)小明在解答本題時(shí),發(fā)現(xiàn)△AOE是等腰三角形.那么,直線BC上是否存在除點(diǎn)E以外的點(diǎn)P,使△AOP也是等腰三角形,如果存在,請(qǐng)直接寫出所有符合題意的點(diǎn)P坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案