【題目】已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,
(1)證明四邊形ABDF是平行四邊形;
(2)若AF=DF=5,AD=6,求AC的長.
【答案】
(1)證明:∵BD垂直平分AC,
∴AB=BC,AD=DC,
在△ADB與△CDB中,
,
∴△ADB≌△CDB(SSS)
∴∠BCD=∠BAD,
∵∠BCD=∠ADF,
∴∠BAD=∠ADF,
∴AB∥FD,
∵BD⊥AC,AF⊥AC,
∴AF∥BD,
∴四邊形ABDF是平行四邊形
(2)解:∵四邊形ABDF是平行四邊形,AF=DF=5,
∴ABDF是菱形,
∴AB=BD=5,
∵AD=6,
設BE=x,則DE=5﹣x,
∴AB2﹣BE2=AD2﹣DE2,
即52﹣x2=62﹣(5﹣x)2
解得:x= ,
∴ = ,
∴AC=2AE=
【解析】(1)先證得△ADB≌△CDB求得∠BCD=∠BAD,從而得到∠ADF=∠BAD,所以AB∥FD,因為BD⊥AC,AF⊥AC,所以AF∥BD,即可證得.(2)先證得平行四邊形是菱形,然后根據勾股定理即可求得.
【考點精析】掌握線段垂直平分線的性質和勾股定理的概念是解答本題的根本,需要知道垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將斜邊長為2個等腰直角三角形按如圖所示的位置擺放,得到一條折線O﹣A﹣B﹣C﹣D…,點P從點O出發(fā)沿著折線以每秒 的速度向右運動,2016秒時,點P的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有2條生產線計劃在一個月(30天)內組裝520臺產品(每天產品的產量相同),按原先的組裝速度,不能完成任務;若加班生產,每條生產線每天多組裝2臺產品,能提前完成任務.
(1)每條生產線原先每天最多能組裝多少臺產品?
(2)要按計劃完成任務,策略一:增添1條生產線,共要多投資19000元;策略二:按每天能組裝最多臺數(shù)加班生產,每條生產線每天共要多花費350元;選哪一個策略較省費用?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c圖象如圖,下列正確的個數(shù)為( )
①bc>0;
②2a﹣3c<0;
③2a+b>0;
④ax2+bx+c=0有兩個解x1 , x2 , 當x1>x2時,x1>0,x2<0;
⑤a+b+c>0;
⑥當x>1時,y隨x增大而減。
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某“愛心義賣”活動中,購進甲、乙兩種文具,甲每個進貨價高于乙進貨價10元,90元買乙的數(shù)量與150元買甲的數(shù)量相同.
(1)求甲、乙進貨價;
(2)甲、乙共100件,將進價提高20%進行銷售,進貨價少于2080元,銷售額要大于2460元,求有幾種方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關于該二次函數(shù),下列說法錯誤的是( )
A.函數(shù)有最小值
B.對稱軸是直線x=
C.當x< ,y隨x的增大而減小
D.當﹣1<x<2時,y>0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某數(shù)學興趣小組想測量一棵樹CD的高度,他們先在點A處測得樹頂C的仰角為30°,然后沿AD方向前行10m,到達B點,在B處測得樹頂C的仰角高度為60°(A、B、D三點在同一直線上).請你根據他們測量數(shù)據計算這棵樹CD的高度(結果精確到0.1m).(參考數(shù)據: ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】書店舉行購書優(yōu)惠活動:
①一次性購書不超過100元,不享受打折優(yōu)惠;
②一次性購書超過100元但不超過200元一律打九折;
③一次性購書200元一律打七折.
小麗在這次活動中,兩次購書總共付款229.4元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】蕪湖長江大橋是中國跨度最大的公路和鐵路兩用橋梁,大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設你站在橋上測得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請求出立柱BH的長.(結果精確到0.1米, ≈1.732)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com