【題目】如圖,迎賓公園的噴水池邊上有半圓形的石頭(半徑為1.12m)作為裝飾,其中一塊石頭正前方5.88m處有一彩燈,某一時刻,該燈柱落在此半圓形石頭上的影長為0.56πm.如果同一時刻,一直立0.6m的桿子的影長為1.8m,則燈柱的高____m.
【答案】
【解析】
如圖,OC=OD=1.12m,BD=5.88m,CD的弧長為0.56πm,先利用弧長公式計算出∠DOC=90°,則OC⊥OD,作CE⊥AB于E,則CE=OB=OD+BD=7m,BE=OC=1.12m,接著利用相似比得到,解得AE=,然后計算AE+BE即可.
解:如圖,OC=OD=1.12m,BD=5.88m,CD的弧長為0.56πm,
設∠COD=n°,則=0.65π,解得n=90,
即∠DOC=90°,
∴OC⊥OD,
作CE⊥AB于E,則CE=OB=OD+BD=1.12m+5.88m=7m,BE=OC=1.12m,
∵同一時刻,一直立0.6m的桿子的影長為1.8m,
∴,,
∴AE=,
∴AB=AE+BE=+1.12=(m),
即燈柱的高為(m)
故答案為:(m).
科目:初中數(shù)學 來源: 題型:
【題目】已知近視眼鏡的度數(shù)y(度)與鏡片焦距x(米)之間成如圖所示的反比例函數(shù)關(guān)系,則眼鏡度數(shù)y與鏡片焦距x之間的函數(shù)解析式為( 。
A. y=200x B. y= C. y=100x D. y=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是邊AB、AC上的點,DE∥BC,點F在線段DE上,過點F作FG∥AB、FH∥AC分別交BC于點G、H,如果BG:GH:HC=2:4:3.求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分8分)一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2)、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.
(1)從中任意摸出1個球,恰好摸到紅球的概率是 ;
(2)先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點A逆時針旋轉(zhuǎn)90°得到△ADE,BC的延長線交DE于F,連接BD,若BC=2EF,試證明△BED是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,∠BAC=90°,AB=AC=2,D、E兩點分別在AC、BC上,且DE∥AB,DC=2,將△CDE繞點C順時針旋轉(zhuǎn)得到△CD′E′,如圖2,點D、E對應點分別為D′、E′、D′、E′與AC相交于點M,當E′剛好落在邊AB上時,△AMD′的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD與正方形OEFG中,點D和點F的坐標分別為(﹣3,2)和(1,﹣1),則這兩個正方形的位似中心的坐標為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小敏家對面新建了一幢圖書大廈,小敏在自家窗口測得大廈頂部的仰角為45°,大廈底部的仰角為30°,如圖所示,量得兩幢樓之間的距離為20米.
(1)求出大廈的高度BD;
(2)求出小敏家的高度AE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com