【題目】已知關(guān)于x的一元二次方程2x2﹣(4k+3)x+2k2+k=0.
(1)當(dāng)k取何值時,方程有兩個不相等的實數(shù)根?
(2)在(1)的條件下,若k是滿足條件的最小整數(shù),求方程的根.
【答案】(1) 當(dāng)k>﹣時,方程有兩個不相等的實數(shù)根;(2) x1=0,x2=
【解析】
(1)根據(jù)方程的系數(shù)結(jié)合根的判別式△>0,即可得出關(guān)于k的一元一次不等式,解之即可得出結(jié)論;
(2)結(jié)合(1)的結(jié)論可得出k值,將其代入原方程,解之即可得出結(jié)論.
(1)∵關(guān)于x的一元二次方程2x2﹣(4k+3)x+2k2+k=0有兩個不相等的實數(shù)根,
∴△=[﹣(4k+3)]2﹣4×2×(2k2+k)=16k+9>0,
解得:k>﹣.
∴當(dāng)k>﹣時,方程有兩個不相等的實數(shù)根;
(2)根據(jù)題意,得:k=0,
∴原方程為2x2﹣3x=0,即x(2x﹣3)=0,
解得:x1=0,x2=.
∴方程的根為x1=0,x2=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過A(﹣4,0)、B(0,﹣4)、C(2,0)三點,若點M為第三象限內(nèi)拋物線上一動點,△AMB的面積為S,則S的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點B1成中心對稱,再作△B2A3B3與△B2A2B1關(guān)于點B2成中心對稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點A2n+1的坐標(biāo)是( )
A. (4n﹣1,)B. (2n﹣1,)C. (4n+1,)D. (2n+1,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一圓弧形橋拱的圓心為,拱橋的水面跨度米,橋拱到水面的最大高度為米.求:
橋拱的半徑;
現(xiàn)水面上漲后水面跨度為米,求水面上漲的高度為________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a>0)經(jīng)過原點O和點A(2,0),B(﹣1,2)三點.
(1)寫出拋物線的對稱軸和頂點坐標(biāo);
(2)點(x1,y1),(x2,y2)在拋物線上,若x1<x2<1,比較y1,y2的大小,并說明理由;
(3)點C與點B關(guān)于拋物線的對稱軸對稱,求直線AC的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=6,將△ABC繞點A逆時針方向旋轉(zhuǎn)60°得到△AB′C′,求線段B′C的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c(a>0)與x軸的正半軸交于A,C兩點(點A在點C右側(cè)),與y軸正半軸交于點B,連結(jié)BC,將△BOC沿直線BC翻折,若點O恰好落在線段AB上,則稱該拋物線為”折點拋物線”,下列拋物線是“折點拋物線”的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某新型高科技商品,每件的售價比進價多6元,5件的進價相當(dāng)于4件的售價,每天可售出200件,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件商品漲價1元,每天就會少賣5件.
(1)該商品的售價和進價分別是多少元?
(2)設(shè)每天的銷售利潤為w元,每件商品漲價x元,則當(dāng)售價為多少元時,該商品每天的銷售利潤最大,最大利潤為多少元?
(3)為增加銷售利潤,營銷部推出了以下兩種銷售方案:方案一:每件商品漲價不超過8元;方案二:每件商品的利潤至少為24元,請比較哪種方案的銷售利潤更高,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,直徑DE⊥AB于點F,交BC于點 M,DE的延長線與AC的延長線交于點N,連接AM.
(1)求證:AM=BM;
(2)若AM⊥BM,DE=8,∠N=15°,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com