【題目】已知:點A在射線CE上,∠C=∠D.
⑴如圖1,若AD∥BC,求證:BD∥AC;
⑵如圖2,若∠BAC=∠BAD,BD⊥BC,請?zhí)骄俊?/span>DAE與∠C的數(shù)量關(guān)系,寫出你的探究結(jié)論,并加以證明;
⑶如圖3,在⑵的條件下,過點D作DF∥BC交射線于點F,當∠DFE=8∠DAE時,求∠BAD的度數(shù).
【答案】(1)見解析;(2)∠DAE+2∠C=90 ;(3)99°
【解析】
(1)根據(jù)AC∥BD,可得∠DAE=∠D,再根據(jù)∠C=∠D,即可得到∠DAE=∠C,進而判定AD∥BC;
(2)根據(jù)∠CGB是△ADG是外角,即可得到∠CGB=∠D+∠DAE,再根據(jù)△BCG中,∠CGB+∠C=90°,即可得到∠D+∠DAE+∠C=90°,進而得出2∠C+∠DAE=90°;
(3)設∠DAE=α,則∠DFE=8α,∠AFD=180°-8α,根據(jù)DF∥BC,即可得到∠C=∠AFD=180°-8α,再根據(jù)2∠C+∠DAE=90°,即可得到2(180°-8α)+α=90°,求得α的值,即可運用三角形內(nèi)角和定理得到∠BAD的度數(shù).
解:(1)∵AC∥BD,
∴∠DAE=∠D,
又∵∠C=∠D,
∴∠DAE=∠C,
∴AD∥BC;
(2)∠EAD+2∠C=90°.
證明:設CE與BD交點為G,
∵∠CGB是△ADG是外角,
∴∠CGB=∠D+∠DAE,
∵BD⊥BC,
∴∠CBD=90°,
∴△BCG中,∠CGB+∠C=90°,
∴∠D+∠DAE+∠C=90°,
又∵∠D=∠C,
∴2∠C+∠DAE=90°;
(3)設∠DAE=α,則∠DFE=8α,
∵∠DFE+∠AFD=180°,
∴∠AFD=180°﹣8α,
∵DF∥BC,
∴∠C=∠AFD=180°﹣8α,
又∵2∠C+∠DAE=90°,
∴2(180°﹣8α)+α=90°,
∴α=18°,
∴∠C=180°﹣8α=36°=∠ADB,
又∵∠C=∠BDA,∠BAC=∠BAD,
∴∠ABC=∠ABD=∠CBD=45°,
∴△ABD中,∠BAD=180°﹣45°﹣36°=99°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,對角線AC,BD相交于點O,不添加任何輔助線,要使四邊形ABCD是正方形,則需要添加一個條件是 . (填一個即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知的一條邊的長為5,另兩邊的長是關(guān)于的一元二次方程的兩個實數(shù)根.
(1)求證:無論為何值,方程總有兩個不相等的實數(shù)根;
(2)當為何值時,為直角三角形,并求出的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某款籃球架的示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.26,sin75°≈0.97,tan75°≈3.73, ≈1.73)( )
A.3.04
B.3.05
C.3.06
D.4.40
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把幾個圖形拼成一個新的圖形,再通過兩種不同的方法計算同一個圖形的面積,可以得到一個等式,也可以求出一些不規(guī)則圖形的面積.
例如,由圖1,可得等式:
⑴根據(jù)如圖1,寫出一個等式:
⑵如圖2,若長方形的長AB為10,AD寬為6,分別求a、b的值;
⑶如圖3,將兩個邊長分別為a和b的正方形拼在一起,B,C,G三點在同一直線上,連接BD和BF.若這兩個正方形的邊長滿足a+b=6,ab=10,請求出陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某開發(fā)公司生產(chǎn)的960件新產(chǎn)品需要精加工后才能投放市場。現(xiàn)有甲、乙兩個工廠都想加工這批產(chǎn)品,已知甲廠單獨加工這批產(chǎn)品比乙工廠單獨加工完這批產(chǎn)品多用20天,而甲工廠每天加工的數(shù)量是乙工廠每天加工數(shù)量的,甲、乙兩個工廠每天各能加工多少個新產(chǎn)品?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)與x軸的兩個交點的坐標分別是(-3,0),(2,0),則方程ax2+bx+c=0(a≠0)的解是.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知∠AOB=90°,在∠AOB的平分線OM上有一點C,將一個三角板的直角頂點與C重合,它的兩條直角邊分別與OA,OB(或它們的反向延長線)相交于點D,E.
當三角板繞點C旋轉(zhuǎn)到CD與OA垂直時(如圖①),易證:OD+OE= OC;
當三角板繞點C旋轉(zhuǎn)到CD與OA不垂直時,即在圖②,圖③這兩種情況下,上述結(jié)論是否仍然成立?若成立,請給予證明;若不成立,線段OD,OE,OC之間又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一個鈍角△ABC(其中∠ABC=120°)繞
點B順時針旋轉(zhuǎn)得△A1BC1,使得C點落在AB的延長線上的點C1處,連結(jié)AA1.
(1)寫出旋轉(zhuǎn)角的度數(shù);
(2)求證:∠A1AC=∠C1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com