精英家教網 > 初中數學 > 題目詳情
閱讀理解,回答問題.
在解決數學問題的過程中,有時會遇到比較兩數大小的問題,解決這類問題的關鍵是根據命題的題設和結論特征,采用相應辦法,其中巧用“作差法”是解決此類問題的一種行之有效的方法:若a-b>0,則a>b;若a-b=0,則a=b;若a-b<0,則a<b.
例如:在比較m2+1與m2的大小時,小東同學的作法是:
∵(m2+1)-(m2)=m2+1-m2=1>0,
∴m2+1>m2
請你參考小東同學的作法,解決如下問題:
(1)請你比較4
3
與(2+
3
2的大小;
(2)已知a、b為實數,且ab=1,設M=
a
a+1
+
b
b+1
,N=
1
a+1
+
1
b+1
,試比較M、N的大;
(3)一天,小明爸爸的男同事來家做客,已知爸爸的年齡比小明年齡的平方大7歲,爸爸同事的年齡是小明年齡的5倍,請你幫忙算一算,小明該稱呼爸爸的這位同事為“叔叔”還是“大伯”?
分析:(1)本題須通過計算4
3
與(2+
3
2的差即可得出結論.
(2)本題須通過計算M-N的值,即可比較出M、N的大。
(3)本題需先設小明的年齡為x歲,再用x表示出爸爸的年齡和爸爸同事的年齡,最后求出爸爸的年齡和爸爸同事的年齡的差,即可得出誰的年齡大.
解答:解:(1)∵4
3
-(2+
3
)2
2
=4
3
-(4+4
3
+3)
=-7<0
4
3
<(2+
3
)2


(2)∵M-N=(
a
a+1
+
b
b+1
)-(
1
a+1
+
1
b+1

=
2ab-2
(a+1)(b+1)

又∵ab=1
∴M-N=0
∴M=N

(3)設小明的年齡為x歲,則爸爸的年齡為(x2+7)歲,爸爸同事的年齡為5x歲.
∵(x2+7)-5x
=(x-
5
2
)2+
3
4
>0
2+
3
4
>0

∴爸爸的年齡大,小明該稱呼爸爸的這位同事為“叔叔”.
點評:本題主要考查了配方法的應用,在解題時要能根據題意列出式子并要配方法對列出的式子進行變形是本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

閱讀理解并回答問題.觀察下列各式:
1
2
=
1
1×2
=
1
1
-
1
2

1
6
=
1
2×3
=
1
2
-
1
3
,
1
12
=
1
3×4
=
1
3
-
1
4

1
20
=
1
4×5
=
1
4
-
1
5
,
1
30
=
1
5×6
=
1
5
-
1
6
,…①
(1)請你猜想出表示①中的特點的一般規(guī)律,用含n(n表示整數)的等式表示出來
 

(2)請利用上速規(guī)律計算:(要求寫出計算過程)
1
2
+
1
6
+
1
12
+…+
1
(n-1)n
+
1
n(n+1)

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀理解并回答問題.
(1)觀察下列各式:
1
2
=
1
1×2
=
1
1
-
1
2
,
1
6
=
1
2×3
=
1
2
-
1
3
,
1
12
=
1
3×4
=
1
3
-
1
4
,
1
20
=
1
4×5
=
1
4
-
1
5
,
1
30
=
1
5×6
=
1
5
-
1
6
,…
請你猜想出表示(1)中的特點的一般規(guī)律,用含x(x表示整數)的等式表示出來
1
x(x+1)
=
 

(2)請利用上述規(guī)律計算:(要求寫出計算過程)
1
2
+
1
6
+
1
12
+…+
1
(n-1)n
+
1
n(n+1)

(3)請利用上述規(guī)律,解方程
1
(x-4)(x-3)
+
1
(x-3)(x-2)
+
1
(x-2)(x-1)
+
1
(x-1)x
+
1
x(x+1)
=
1
x+1

查看答案和解析>>

科目:初中數學 來源: 題型:

閱讀理解并回答問題.
(1)觀察下列各式:
1
2
=
1
1×2
=
1
1
-
1
2
1
6
=
1
2×3
=
1
2
-
1
3
,
1
12
=
1
3×4
=
1
3
-
1
4
,…
(2)找出規(guī)律,并計算:
1
2
+
1
6
+
1
12
+…+
1
(n-1)n
+
1
n(n+1)

(3)解方程:
1
(x-4)(x-3)
+
1
(x-3)(x-2)
+
1
(x-2)(x-1)
+
1
(x-1)x
+
1
x(x+1)
=
1
x+1

查看答案和解析>>

科目:初中數學 來源: 題型:

閱讀理解并回答問題.
(1)觀察下列各式:
1
2
=
1
1×2
=
1
1
-
1
2
,
1
6
=
1
2×3
=
1
2
-
1
3
1
12
=
1
3×4
=
1
3
-
1
4
,
1
20
=
1
4×5
=
1
4
-
1
5
,…
(2)請你猜想出表示(1)中的特點的一般規(guī)律,用含x(x表示整數)的等式表示
1
x(x+1)
=
1
x
-
1
x+1
1
x
-
1
x+1

(3)請利用上述規(guī)律,解方程
1
(x-4)(x-3)
+
1
(x-3)(x-2)
+
1
(x-2)(x-1)
+
1
(x-1)x
+
1
x(x+1)
=
1
x+1

查看答案和解析>>

同步練習冊答案