如圖,直線y=-
3
x+4
3
與x軸相交于點A,與直線y=
3
x
相交于點P.
(1)求點P的坐標.
(2)請判斷△OPA的形狀并說明理由.
(3)動點E從原點O出發(fā),以每秒1個單位的速度沿著O→P→A的路線向點A勻速運動(E不與點O、A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B.設運動t秒時,矩形EBOF與△OPA重疊部分的面積為S.求S與t之間的函數(shù)關系式.
精英家教網(wǎng)
分析:(1)將兩直線的解析式聯(lián)立組成方程組,解得x、y的值即為兩直線的交點坐標的橫縱坐標;
(2)求得直線AP與x軸的交點坐標(4,0),利用OP=4PA=4得到OA=OP=PA從而判定△POA是等邊三角形;
(3)分別求得OF和EF的值,利用三角形的面積計算方法表示出三角形的面積即可.
解答:精英家教網(wǎng)解:(1)解方程組
y=-
3
x+4
3
y=
3
x
,
解得:
x=2
y=2
3

∴點P的坐標為(2,2
3
);

(2)當y=0時,x=4,∴點A的坐標為(4,0).
OP=
22+(2
3
)
2
=4
PA=
(2-4)2+(2
3
-0)
2
=4

∴OA=OP=PA,
∴△POA是等邊三角形;

(3)
當0<t≤4時,S=
1
2
•OF•EF=
3
8
t2

當4<t<8時,S=-
3
3
8
t2+4
3
t-8
3
點評:本題主要考查了一次函數(shù)的綜合知識,解題的關鍵是正確的利用一次函數(shù)的性質(zhì)求與坐標軸的交點坐標并轉(zhuǎn)化為線段的長.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:直線y=-3x+6與y軸交于點A,與直線y=2x+1交于點B,且直線y=2x+1與x軸交于點C,則△ABC的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線y=3x+3交x軸于A點,交y軸于B點,過A、B兩點的拋物線交x軸于另一點C(3,0).
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點Q,使△ABQ是等腰三角形?若存在,求出符合條件的Q點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•雙柏縣二模)如圖,直線y=3x+3交x軸于A點,交y軸于B點,過A、B兩點的拋物線交x軸于另一點C(3,0).
(1)求拋物線的解析式;
(2)求拋物線的對稱軸和頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線y=3x+3交x軸于A點,交y軸于B點,過A、B兩點的拋物線交x軸于另一點C(3,0).
(1)求A、B的坐標;
(2)求拋物線的解析式;
(3)在拋物線的對稱軸上是否存在點Q,使△ABQ是等腰三角形?若存在,求出符合條件的Q點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線y=3x-3交x軸于B,交y軸于C,以OC為邊作正方形OCEF,E F交雙曲線y=
kx
于點M.且FM=OB.
(1)求k的值.
(2)請你連OM、OG、GM,并求S△OGM
(3)點P是雙曲線上一點,點N為x軸上一點,請?zhí)骄浚菏欠翊嬖邳cP、N,使以B、C、P、N為頂點組成平行四邊形?若存在,求出點P、N的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案