【題目】曉琳和爸爸到太子河公園運動,兩人同時從家出發(fā),沿相同路線前行,途中爸爸有事返回,曉琳繼續(xù)前行5分鐘后也原路返回,兩人恰好同時到家.曉琳和爸爸在整個運動過程中離家的路程y1(米),y2(米)與運動時間x(分)之間的函數(shù)關(guān)系如圖所示,下列結(jié)論:①兩人同行過程中的速度為200/分;②m的值是15,n的值是3000;③曉琳開始返回時與爸爸相距1800米;④運動18分鐘或30分鐘時,兩人相距900.其中正確結(jié)論的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

①兩人同行過程中的速度就是20分鐘前進4000千米的速度;②爸爸有事返回的時間,比曉琳原路返回的時間20分鐘少5分鐘,n的值用速度乘以時間即可;③曉琳開始返回時與爸爸的距離是他們的速度和乘以時間5分鐘;④兩人相距900米是y1-y2=900.

:①4000÷20=200/分∴兩人同行過程中的速度為200/分,①正確
②m=20-5=15,n=200×15=3000,②正確
③曉琳開始返回時,爸爸和曉琳各走5分鐘,爸爸返回的速度為100所以他們的距離為:300×5=1500(米),③不正確
④設(shè)爸爸返回的解析式為y2=kx+b,把(15,3000)(45,0)代入得

,
解得
∴y2=-100x+4500
∴當0≤x≤20時,y1=200x
y1-y2=900∴200x-(-100x+4500)=900
∴x=18
20≤x≤45時,y1=ax+b,將(20,4000)(45,0)代入得 ,

y1=-160x+7200
y1-y2=900 ,

(-160x+7200)-(-100x+4500)=900,
x=30∴④正確
故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.

(1)求證:AB=AF;

(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上學(xué)習(xí)了圓周角的概念和性質(zhì):頂點在圓上,兩邊與圓相交同弧所對的圓周角相等,小明在課后繼續(xù)對圓外角和圓內(nèi)角進行了探究.

下面是他的探究過程,請補充完整:

定義概念:頂點在圓外,兩邊與圓相交的角叫做圓外角,頂點在圓內(nèi),兩邊與圓相交的角叫做圓內(nèi)角.如圖1,∠M所對的一個圓外角.

(1)請在圖2中畫出所對的一個圓內(nèi)角;

提出猜想

(2)通過多次畫圖、測量,獲得了兩個猜想:一條弧所對的圓外角______這條弧所對的圓周角;一條弧所對的圓內(nèi)角______這條弧所對的圓周角;(大于、等于小于”)

推理證明:

(3)利用圖1或圖2,在以上兩個猜想中任選一個進行證明;

問題解決

經(jīng)過證明后,上述兩個猜想都是正確的,繼續(xù)探究發(fā)現(xiàn),還可以解決下面的問題.

(4)如圖3,FH是∠CDE的邊DC上兩點,在邊DE上找一點P使得∠FPH最大.請簡述如何確定點P的位置.(寫出思路即可,不要求寫出作法和畫圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣教育局為了豐富初中學(xué)生的大課間活動,要求各學(xué)校開展形式多樣的陽光體育活動.某中學(xué)就學(xué)生體育活動興趣愛好的問題,隨機調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:

1)在這次調(diào)查中,喜歡籃球項目的同學(xué)有   人,在扇形統(tǒng)計圖中,乒乓球的百分比為   %,如果學(xué)校有800名學(xué)生,估計全校學(xué)生中有   人喜歡籃球項目.

2)請將條形統(tǒng)計圖補充完整.

3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機抽取2名同學(xué)代表班級參加;@球隊,請直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+2x+c(a<0)與x軸交于點A和點B(點A在原點的左側(cè),點B在原點的右側(cè)),與y軸交于點C,OB=OC=3.

(1)求該拋物線的函數(shù)解析式.

(2)如圖1,連接BC,點D是直線BC上方拋物線上的點,連接OD,CD.ODBC于點F,當SCOF:SCDF=3:2時,求點D的坐標.

(3)如圖2,點E的坐標為(0,),點P是拋物線上的點,連接EB,PB,PE形成的△PBE中,是否存在點P,使∠PBE或∠PEB等于2∠OBE?若存在,請直接寫出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖 1,在ABC 中,ACB90°,BCAC,點 D AB 上,DEAB BC E,點 F AE 的中點

1 寫出線段 FD 與線段 FC 的關(guān)系并證明;

2 如圖 2,將BDE 繞點 B 逆時針旋轉(zhuǎn)αα90°),其它條件不變,線段 FD 與線段 FC 的關(guān)系是否變化,寫出你的結(jié)論并證明;

3 BDE 繞點 B 逆時針旋轉(zhuǎn)一周,如果 BC4,BE2,直接寫出線段 BF 的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角∠MBN的余弦值為,點C在射線BN上,BC25,點A在∠MBN的內(nèi)部,且∠BAC90°,∠BCA=∠MBN.過點A的直線DE分別交射線BM、射線BN于點D、E.點F在線段BE上(點F不與點B重合),且∠EAF=∠MBN

1)如圖1,當AFBN時,求EF的長;

2)如圖2,當點E在線段BC上時,設(shè)BFx,BDy,求y關(guān)于x的函數(shù)解析式并寫出函數(shù)定義域;

3)聯(lián)結(jié)DF,當ADFACE相似時,請直接寫出BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,△ABC的位置如圖所示.(每個小方格都是邊長為1個單位長度的正方形)

(1)畫出△ABC關(guān)于原點對稱的△A'B'C';

(2)將△A'B'C'繞點C'順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△ABC″,并直接寫出此過程中線段C'A'掃過圖形的面積.(結(jié)果保留π)

查看答案和解析>>

同步練習(xí)冊答案