28、如果一個正整數(shù)能表示為兩個連續(xù)偶數(shù)的平方差,那么稱這個正整數(shù)為“神秘數(shù)”.如:4=22-02,12=42-22,20=62-42,因此4,12,20這三個數(shù)都是神秘數(shù).
(1)28和2012這兩個數(shù)是神秘數(shù)嗎?為什么?
(2)設(shè)兩個連續(xù)偶數(shù)為2k+2和2k(其中k取非負整數(shù)),由這兩個連續(xù)偶數(shù)構(gòu)造的神秘數(shù)是4的倍數(shù)嗎?為什么?
(3)兩個連續(xù)奇數(shù)的平方差(取正數(shù))是神秘數(shù)嗎?為什么?
分析:(1)試著把28、2012寫成平方差的形式,即可判斷是否是神秘數(shù);
(2)化簡兩個連續(xù)偶數(shù)為2k+2和2k的差,再判斷;
(3)設(shè)兩個連續(xù)奇數(shù)為2k+1和2k-1,則(2k+1)2(2k-1)2=8k,即可判斷兩個連續(xù)奇數(shù)的平方差不是神秘數(shù).
解答:解:(1)28=4×7=82-62;2012=4×503=5042-5022,
所以是神秘數(shù);
(2)(2k+2)2-(2k)2=(2k+2-2k)(2k+2+2k)=4(2k+1),
∴由2k+2和2k構(gòu)造的神秘數(shù)是4的倍數(shù).
(3)設(shè)兩個連續(xù)奇數(shù)為2k+1和2k-1,
則(2k+1)2(2k-1)2=8k,
∴兩個連續(xù)奇數(shù)的平方差不是神秘數(shù).
點評:此題考查的知識點是因式分解的應(yīng)用,同時考查了閱讀能力、探究推理能力.對知識點的考查,主要是平方差公式的靈活應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如果一個正整數(shù)能表示為兩個正整數(shù)的平方差,那么稱這個正整數(shù)為“智慧數(shù)”.例如:3=22-12,5=32-22,請你根據(jù)上述定義寫出一個智慧數(shù)的式子
7=42-32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如果一個正整數(shù)能表示為兩個連續(xù)偶數(shù)的平方差,那么稱這個正整數(shù)為“神秘數(shù)”.如:4=42-02,12=42-22,20=62-42,因此4,12,20都是“神秘數(shù)”
(1)28和2 012這兩個數(shù)是“神秘數(shù)”嗎?為什么?
(2)設(shè)兩個連續(xù)偶數(shù)為2k+2和2k(其中k取非負整數(shù)),由這兩個連續(xù)偶數(shù)構(gòu)造的神秘數(shù)是4的倍數(shù)嗎?為什么?
(3)兩個連續(xù)奇數(shù)的平方數(shù)(取正數(shù))是神秘數(shù)嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如果一個正整數(shù)能表示為兩個連續(xù)偶數(shù)的平方差,那么稱這個正整數(shù)為“神秘數(shù)”,如4=22-02,12=42-22,20=62-42.因此4、12、20都是“神秘數(shù)”.那么兩個連續(xù)奇數(shù)的平方差(取正數(shù))
不是
(填“是”或“不是”)“神秘數(shù)”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果一個正整數(shù)能表示為兩個連續(xù)的偶數(shù)的平方差,那么稱這個正整數(shù)為“神秘數(shù)”.如果4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘數(shù)”.
(1)28
神秘數(shù),2010
不是
不是
神秘數(shù)(填“是”或“不是”);
(2)設(shè)兩個連續(xù)偶數(shù)為2k+2和2k(其中k取非負整數(shù)),那么由這兩個連續(xù)偶數(shù)構(gòu)造的神秘數(shù)是4的倍數(shù)嗎,它是不是8的倍數(shù)?為什么?
(3)兩個連續(xù)的奇數(shù)的平方差是神秘數(shù)嗎?為什么?

查看答案和解析>>

同步練習(xí)冊答案