【題目】如圖,邊長為1的菱形中,,連結(jié)對角線,以為邊做第二個菱形,.連結(jié),再以為邊做第三個菱形,使…按此規(guī)律所作的第2015個菱形的邊長是__________

【答案】()2014

【解析】

連接DBAC相交于M,根據(jù)已知和菱形的性質(zhì)可分別求得AC,AEAG的長,從而可發(fā)現(xiàn)規(guī)律,根據(jù)規(guī)律不難求得第n個菱形的邊長,第2015個菱形的邊長就迎刃而解了.

解:連接DB

∵四邊形ABCD是菱形,

AD=AB,ACDB,∠DAB=60°
ADB是等邊三角形,

DB=AD=1,
BM=
AM=,

AC=

同理可得
AE=AC=()AG=AE=()= (),

按此規(guī)律所作的第n個菱形的邊長為:()n-1

∴第2015個菱形的邊長是:()2014
故答案為:()2014

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鄂州市化工材料經(jīng)銷公司購進一種化工原料若干千克,價格為每千 克30元物價部門規(guī)定其銷售單價不高于每千克60元,不低于每千克30元經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y千克)是銷售單價x元)的一次函數(shù),且當x=60時 ,y=80;x=50時,y=100在銷售過程中,每天還要支付其他費用450元

1)3分)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍

2)3分)求該公司銷售該原料日獲利w與銷售單價x之間的函數(shù)關(guān)系式

3)4分)當銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC是⊙O的弦,半徑ODBC,垂足為E,若BC=,OE=3;

求:(1)O的半徑;

(2)陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】馬路兩側(cè)有兩根燈桿AB、CD,當小明站在點N處時,在燈C的照射下小明的影長正好為NB,在燈A的照射下小明的影長為NE,測得BD=24m,NB=6m,NE=2m.

(1)若小明的身高MN=1.6m,求AB的長;

(2)試判斷這兩根燈桿的高度是否相等,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,點在線段上運動(點不與重合),連接,作交線段

1)當時,

2)當等于多少度時,?請說明理由;

3能成為等腰三角形嗎?若能,請直接寫出的度數(shù);若不能,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,將繞頂點順時針旋轉(zhuǎn),旋轉(zhuǎn)角為,得到

1)如圖1,當時,設(shè)相交于點,求證是等邊三角形;

2)如圖2,設(shè)中點為,中點為,,連接.在旋轉(zhuǎn)過程中,線段的長度是否存在最大值?如果存在,請求出這個最大值并說明此時旋轉(zhuǎn)角的度數(shù),如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點H,點G在弧BD上,連接AG,交CD于點K,過點G的直線交CD延長線于點E,交AB延長線于點F,且EG=EK.

(1)求證:EF是⊙O的切線;

(2)若⊙O的半徑為13,CH=12,AC∥EF,求OH和FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),是兩個全等的直角三角形(直角邊分別為a,b,斜邊為c

1)用這樣的兩個三角形構(gòu)造成如圖(2)的圖形,利用這個圖形,證明:a2+b2c2;

2)用這樣的兩個三角形構(gòu)造圖3的圖形,你能利用這個圖形證明出題(1)的結(jié)論嗎?如果能,請寫出證明過程;

3)當a3b4時,將其中一個直角三角形放入平面直角坐標系中,使直角頂點與原點重合,兩直角邊ab分別與x軸、y軸重合(如圖4RtAOB的位置).點C為線段OA上一點,將△ABC沿著直線BC翻折,點A恰好落在x軸上的D處.

①請寫出C、D兩點的坐標;

②若△CMD為等腰三角形,點Mx軸上,請直接寫出符合條件的所有點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A,B在半徑為1⊙O上,∠AOB=60°,延長OBC,過點C作直線OA的垂線記為l,則下列說法正確的是( )

A. BC等于0.5時,l⊙O相離

B. BC等于2時,l⊙O相切

C. BC等于1時,l⊙O相交

D. BC不為1時,l⊙O不相切

查看答案和解析>>

同步練習(xí)冊答案