【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)為原點(diǎn),直線(為常數(shù),且)經(jīng)過點(diǎn),交軸于點(diǎn),已知點(diǎn)的坐標(biāo)為
求的值;
過點(diǎn)作軸,垂足為點(diǎn),點(diǎn)在的延長線上,連接,且在線段上分別取點(diǎn)使得,連接,設(shè)點(diǎn)的縱坐標(biāo)為,的面積為,求與之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
在(2)的條件下,連接,當(dāng)時,點(diǎn)在線段上,連接且.求的值.
【答案】3;;
【解析】
將點(diǎn)B的坐標(biāo)代入解析式中即可求出結(jié)論;
過點(diǎn)作于點(diǎn),過點(diǎn)分別作于點(diǎn)軸于點(diǎn)的延長線交于點(diǎn),用含t的式子表示出BK,然后利用等角的銳角三角函數(shù)相等可得,從而求出AH,然后根據(jù)三角形的面積公式即可求出結(jié)論;
取的中點(diǎn),連接,根據(jù)直角三角形的性質(zhì)可得,設(shè),用a表示出各個角的大小,在上取一點(diǎn),使,連接,利用SAS證出,利用勾股定理求出,然后求出點(diǎn)A的坐標(biāo),代入解析式中即可求出結(jié)論.
解:點(diǎn)在直線上
如圖 1,過點(diǎn)作于點(diǎn),過點(diǎn)分別作于點(diǎn)軸于點(diǎn)的延長線交于點(diǎn)
四邊形為矩形,
在中 ,
在中,
取的中點(diǎn),連接
設(shè),則
在上取一點(diǎn),使,連接
又
令,
則
在中,
解得(舍)
設(shè),則
,
解得
解得
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接體育理化加試,九(2)班同學(xué)到某體育用品商店采購訓(xùn)練用球,已知購買3個A品牌足球和2個B品牌足球需付210元;購買2個A品牌足球和1個B品牌足球需付費(fèi)130元.(優(yōu)惠措施見海報)巨惠來襲(解釋權(quán)歸本店所有)
A品牌 | B品牌 |
單品數(shù)量低于40個不優(yōu)惠,高于40個 享8折優(yōu)惠 | 單品數(shù)量低于40個不優(yōu)惠,高于40個 享9折優(yōu)惠 |
(1)求A,B兩品牌足球的單價各為多少元?
(2)為享受優(yōu)惠,同學(xué)們決定購買一次性購買足球60個,若要求A品牌足球的數(shù)量不低于B品牌足球數(shù)量的3倍,請你設(shè)計(jì)一種付費(fèi)最少的方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn),點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,點(diǎn)是拋物線的頂點(diǎn),過點(diǎn)作軸的垂線,垂足為,連接.
(1)求拋物線的解析式及點(diǎn)的坐標(biāo);
(2)點(diǎn)是拋物線上的動點(diǎn),當(dāng)時,求點(diǎn)的坐標(biāo);
(3)若點(diǎn)是軸上方拋物線上的動點(diǎn),以為邊作正方形,隨著點(diǎn)的運(yùn)動,正方形的大小、位置也隨著改變,當(dāng)頂點(diǎn)或恰好落在軸上時,請直接寫出點(diǎn)的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小明與小亮兩個人打算騎共享單車騎行出游,兩人打開手機(jī)APP進(jìn)行選擇,已知附近共有3種品牌的5輛車,其中A品牌與B品牌各有2輛,C品牌有1輛,手機(jī)上無法識別品牌,且有人選中車后其他人無法再選.
(1)若小明首先選擇,則小明選中A品牌單車的概率為 ;
(2)求小明和小亮選中同一品牌單車的概率.(請用“畫樹狀圖”或“列表”的方法給出分析過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,點(diǎn)在上,連接,將沿折疊得到分別交于點(diǎn).已知,連接交于點(diǎn),若,則的長為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新型冠狀病毒肺炎疫情發(fā)生后,全社會的積極參與疫情防控工作下,才有了我們的平安復(fù)學(xué).為了能在復(fù)學(xué)前將一批防疫物資送達(dá)校園,某運(yùn)輸公司組織了甲、乙兩種貨車,已知甲種貨車比乙種貨車每輛車多裝20箱防疫物資,且甲種貨車裝運(yùn)900箱防疫物資所用車輛與乙種貨車裝運(yùn)600箱防疫物資所用的車輛相等,求甲、乙兩種貨車每輛車可裝多少箱防疫物資?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD和正方形EFGH的對角線BD,EG都在直線l上,將正方形ABCD沿著直線l從點(diǎn)D與點(diǎn)E重合開始向右平移,直到點(diǎn)B與點(diǎn)G重合為止,設(shè)點(diǎn)D平移的距離為x,,,兩個正方形重合部分的面積為S,則S關(guān)于x的函數(shù)圖象大致為( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,、,將點(diǎn)繞點(diǎn)順時針旋轉(zhuǎn)得到點(diǎn),則過點(diǎn)的反比例函數(shù)關(guān)系式為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于、兩點(diǎn),點(diǎn)的坐標(biāo)為.
(1)求點(diǎn)坐標(biāo);
(2)若對于每一個給定的的值,它所對應(yīng)的函數(shù)值都不小于,求的取值范圍.
(3)直線經(jīng)過點(diǎn).
①求直線和拋物線的解析式;
②設(shè)拋物線與軸的交點(diǎn)為,過點(diǎn)作直線軸,將拋物線在軸左側(cè)的部分沿直線翻折,拋物線的其余部分保持不變,得到一個新圖像,請你結(jié)合新圖像回答:
當(dāng)直線與新圖像只有一個公共點(diǎn)且時,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com