【題目】一張矩形紙片,剪下一個正方形,剩下一個矩形,稱為第一次操作;在剩下的矩形紙片中再剪下一個正方形,剩下一個矩形,稱為第二次操作…若在第 n 次操作后,剩下的矩形為正方形,則稱原矩形為n階奇異矩形.如圖1,矩形ABCD中,若AB=2,BC=6,則稱矩形ABCD為2階奇異矩形.

(1)判斷與操作:
如圖2,矩形ABCD的長為5,寬為2,它是奇異矩形嗎?
如果是,請寫出它是幾階奇異矩形,并在圖中畫出裁剪線;如果不是,請說明理由.

(2)探究與計算:
已知矩形ABCD的一邊長為20,另一邊長為a(a<20),且它是3階奇異矩形,請畫出矩形ABCD及裁剪線的示意圖,并在圖的下方寫出a的值.

【答案】
(1)

解:判斷與操作:

矩形ABCD是3階奇異矩形,裁剪線的示意圖如1所示:


(2)

解:探究與計算:

第一次操作后剩下的矩形的兩邊長度為a、(20﹣a),

第二次操作后剩下的矩形的兩邊長度為(20﹣2a)、a或(2a﹣20),(20﹣a),

∵矩形ABCD是3階奇異矩形,

∴有①20﹣2a=2a,②a=2(20﹣2a),③20﹣a=2(2a﹣20),④2a﹣20=2(20﹣a),

解得:a1=5,a2=8,a3=12,a4=15.

裁剪線的示意圖如2①、2②、2③、2④所示:


【解析】1、根據(jù)已知操作步驟畫出即可;2、找出第一、二次操作后剩下矩形的兩邊長度,令其一邊為另一邊的二倍,解關(guān)于a的一元一次方程即可得出結(jié)論.
【考點精析】根據(jù)題目的已知條件,利用矩形的判定方法的相關(guān)知識可以得到問題的答案,需要掌握有一個角是直角的平行四邊形叫做矩形;有三個角是直角的四邊形是矩形;兩條對角線相等的平行四邊形是矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,ABC為直角,以AB為直徑作OAC于點D,點EBC中點,連結(jié)DE,DB.

(1)求證:DEO相切;

(2)若C=30°,求BOD的度數(shù);

(3)在(2)的條件下,若O半徑為2, 求陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,甲、乙、丙、丁四個長方形拼成正方形EFGH,中間陰影為正方形.已知甲、乙、丙、丁四個長方形面積的和是32cm2 , 四邊形ABCD的面積是20cm2 , 則甲、乙、丙、丁四個長方形周長的總和為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、B、C、D在一條直線上,AB=CD,四邊形BECF是平行四邊形.
(1)求證:△AEC≌△DFB;
(2)求證:∠AEB=∠DFC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,一定既是軸對稱圖形又是中心對稱圖形的是( ).

A. 等邊三角形B. 直角三角形C. 平行四邊形D. 正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】5x2﹣25x2y的公因式為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列式子正確的是( 。

A.x6÷x3=x2
B.(﹣1)1=﹣1
C.4m2=
D.(a24=a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題
(1)計算:993×1007
(2)分解因式:﹣2a3+8a2﹣8a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖所示,有下列5個結(jié)論:abc0;ba+c4a+2b+c0;2c3ba+bm am+b)(m≠1的實數(shù)).其中正確結(jié)論的有( 。

A. ①②③ B. ①③④ C. ③④⑤ D. ②③⑤

查看答案和解析>>

同步練習(xí)冊答案