【題目】如圖,BP平分∠ABC,AP⊥BP,垂足為P,連接CP,若三角形△ABC內(nèi)有一點M,則點M落在△BPC內(nèi)(包括邊界)的概率為_____.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC、BD交于點O,已知O是AC的中點,AE=CF,DF∥BE.
(1)求證:△BOE≌△DOF;
(2)若OD=OC,則四邊形ABCD是什么特殊四邊形?請直接給出你的結論,不必證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2019·濟源一模)為支持國家南水北調工程建設,小王家由原來養(yǎng)殖戶變?yōu)榉N植戶, 經(jīng)市場調查得知,種植草莓不超過20畝時,所得利潤 y(元)與種植面積 m(畝)滿足關系式y=1500 m;超過20畝時,y=1380m+2400.而當種植櫻桃的面積不超過15畝時,每畝可獲得利潤1800元;超過15畝時,每畝獲得利潤z(元)與種植面積x(畝)之間的函數(shù)關系式為z=-20x+2 100.
(1)設小王家種植x畝櫻桃所獲得的利潤為P元,直接寫出P關于x的函數(shù)關系式,并寫出自變量的取值范圍;
(2)如果小王家計劃承包40畝荒山種植草莓和櫻桃,當種植櫻桃面積(x畝)滿足0<x<20時,求小王家總共獲得的利潤w(元)的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點B、F、C、E在一條直線上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.
(1)求證:△ABC≌△DEF;
(2)求證:AD與BE互相平分;
(3)若BF=5,FC=4,直接寫出EO的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,O是線段BC上一點,以O為圓心,OC為半徑作⊙O,AB與⊙O相切于點F,直線AO交⊙O于點E,D.
(1)求證:AO是△ABC的角平分線;
(2)若tan∠D=,求的值;
(3)如圖2,在(2)條件下,連接CF交AD于點G,⊙O的半徑為3,求CF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD,E、F兩點在對角線BD上,且BE=DF,連接AE,EC,CF,FA.
(1)求證:四邊形AECF是平行四邊形.
(2)若AF=EF,∠BAF=108°,∠CDF=36°,直接寫出圖中所有與AE相等的線段(除AE外).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,AB=2,∠B=60°,M為AB的中點.動點P在菱形的邊上從點B出發(fā),沿B→C→D的方向運動,到達點D時停止.連接MP,設點P運動的路程為x,MP 2=y,則表示y與x的函數(shù)關系的圖象大致為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與x軸交于點B,與y軸交于點C,拋物線經(jīng)過B、C兩點,且與x軸交于另一點A.
(1)求拋物線的解析式.
(2)點P是線段BC下方的拋物線上的動點(不與點B、C重合),過P作PD∥y軸交BC于點D,以PD為直徑的圓交BC于另一點E,求DE的最大值及此時點P的坐標;
(3)當(2)中的DE取最大值時,將△PDE繞點D旋轉,當點P落在坐標軸上時,求點E的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com