【題目】一個面積為的等腰三角形,它的一個內(nèi)角是30°,則以它的腰長為邊長的正方形面積為_______

【答案】2424

【解析】

分兩種情形討論:30度角是等腰三角形的頂角,30度角是等腰三角形的底角,分別作腰上的高即可.

解:如圖1中,當∠A30°,ABAC時,設ABACa,

BDACD

∵∠A30°,

BDABa

aa6,

a224

∴△ABC的腰長為邊的正方形的面積為24

如圖2中,當∠ABC30°,ABAC時,作BDCACA的延長線于D,設ABACa,

ABAC,

∴∠ABC=∠C30°,

∴∠BAC120°,∠BAD60°,

∵在RtABD中,∠D90°,∠BAD60°,

BDa,

aa6,

a224

∴△ABC的腰長為邊的正方形的面積為24

故答案為:2424

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角三角形中,.

1)如圖1,點在線段上,在線段的延長線上取一點,使得.過點,交延長線于點,過點,交于點,交于點.判斷有怎樣的數(shù)量關(guān)系,寫出你的結(jié)論,并加以證明;

2)如圖2,點在線段的延長線上,在線段的延長線上取一點,使得.過點于點,過點,交延長線于點,交延長線于點.

①依題意補全圖形;

②若,求證:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】尺規(guī)作圖與圖形變換

(尺規(guī)作圖)(不寫作法,保留作圖痕跡)

如圖,一輛汽車在直線形的公路上由點A向點B行駛,M,N 是分別位于公路兩側(cè)的村莊.

1)在圖1中求作一點P,使汽車行駛到此位置時,與村莊M,N的距離之和最;

2)在圖2中求作一點Q,使汽車行駛到此位置時,與村莊 M,N 的距離相等.

(圖形變換)

如圖3所示,在正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上).

3)把△ABC 沿 BA 方向平移后,點 A 移到點,請你在網(wǎng)格中畫出平移后得到的

4)把繞點 按逆時針方向旋轉(zhuǎn) 90°,請你在網(wǎng)格中畫出旋轉(zhuǎn)后的

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形紙片ABCD中,∠A=60°,折疊菱形紙片ABCD,使點C落在DP(PAB的中點)所在的直線上,得到經(jīng)過點D的折痕DE,若菱形邊長為1,則點ECD的距離為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,已知直線ab,A在直線a,B. C在直線b,P在線段AB,1=70,2=100,求∠PCB的度數(shù).

2)下表是某商行一種商品的銷售情況,該商品原價為560元,隨著不同幅度的降價(單位:元),日銷量(單位:件)發(fā)生相應變化如下表:

降價(元)

5

10

15

20

25

30

35

日銷量(件)

78

81

84

87

90

93

96

①根據(jù)表格所列出的變化關(guān)系,請你估計降價之前的日銷量是多少件?

②根據(jù)表格所列出的變化關(guān)系,請直接寫出的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,將ABC繞頂點C逆時針旋轉(zhuǎn)得到ABCMBC的中點,PAB的中點,連接PM,若BC2,∠BAC30°,則線段PM的最大值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)解不等式:,并把它的解集表示在數(shù)軸上;

2)解不等式組,并寫出它的所有非負整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,過點作射線AD//BC,點從點出發(fā)沿射線的速度運動.同時點從點出發(fā)沿射線的速度運動.連結(jié)于點,設點運動時間為

1)求證:AG=BG

2)求AE+CF的長(用含t的代數(shù)式表示).

3)設的面積為,直接寫出當時,的面積(且含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】微商小明投資銷售一種進價為每條元的圍巾.銷售過程中發(fā)現(xiàn),每月銷售量(件)與銷售單價(元)之間的關(guān)系可近似的看作一次函數(shù) 銷售過程中銷售單價不低于成本價,而每條的利潤不高于成本價的

)設小明每月獲得利潤為(元),求每月獲得利潤(元)與銷售單價(元)之間的函數(shù)關(guān)系式,并確定自變量的取值范圍

)當銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?

)如果小明想要每月獲得的利潤不低于,那么小明每月的成本最少需要多少元?(成本進價銷售量)

查看答案和解析>>

同步練習冊答案