【題目】已知:在四邊形ABCD中,對角線AC、BD相交于點E,且AC⊥BD,作BF⊥CD,垂足為點F,BF與AC交于點C,∠BGE=∠ADE.
(1)如圖1,求證:AD=CD;
(2)如圖2,BH是△ABE的中線,若AE=2DE,DE=EG,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于△ADE面積的2倍.
【答案】(1)證明見解析;(2)△ACD、△ABE、△BCE、△BHG.
【解析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根據(jù)∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;
(2)設(shè)DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,據(jù)此知S△ADC=2a2=2S△ADE,證△ADE≌△BGE得BE=AE=2a,再分別求出S△ABE、S△ACE、S△BHG,從而得出答案.
(1)∵∠BGE=∠ADE,∠BGE=∠CGF,
∴∠ADE=∠CGF,
∵AC⊥BD、BF⊥CD,
∴∠ADE+∠DAE=∠CGF+∠GCF,
∴∠DAE=∠GCF,
∴AD=CD;
(2)設(shè)DE=a,
則AE=2DE=2a,EG=DE=a,
∴S△ADE=AE×DE=×2a×a=a2,
∵BH是△ABE的中線,
∴AH=HE=a,
∵AD=CD、AC⊥BD,
∴CE=AE=2a,
則S△ADC=ACDE=(2a+2a)a=2a2=2S△ADE;
在△ADE和△BGE中,
∵,
∴△ADE≌△BGE(ASA),
∴BE=AE=2a,
∴S△ABE=AEBE=(2a)2a=2a2,
S△ACE=CEBE=(2a)2a=2a2,
S△BHG=HGBE=(a+a)2a=2a2,
綜上,面積等于△ADE面積的2倍的三角形有△ACD、△ABE、△BCE、△BHG.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,AC是對角線,今有較大的直角三角板,一邊始終經(jīng)過點B,直角頂點P在射線AC上移動,另一邊交DC于點Q.
(1)如圖①,當(dāng)點Q在DC邊上時,猜想并寫出PB與PQ所滿足的數(shù)量關(guān)系,并加以證明;
(2)如圖②,當(dāng)點Q落在DC的延長線上時,猜想并寫出PB與PQ滿足的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B、F、C、E在一條直線上,AC=DF,BF=CE,那么添加下列一個條件后,仍無法判斷△ABC≌△DEF的是( )
A. ∠A=∠D=90° B. ∠BCA=∠EFD C. ∠B=∠E D. AB=DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD∥BC,∠A=∠C=50°,線段AD上從左到右依次有兩點E、F(不與A、D重合)
(1)AB與CD是什么位置關(guān)系,并說明理由;
(2)觀察比較∠1、∠2、∠3的大小,并說明你的結(jié)論的正確性;
(3)若∠FBD:∠CBD=1:4,BE平分∠ABF,且∠1=∠BDC,求∠FBD的度數(shù),判斷BE與AD是何種位置關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】結(jié)合圖形填空:已知:如圖,.求證:.
證明:∵(已知),
又( ),
∴(等量代換),
∴(同位角相等,兩直線平行),
∴( ).
∵(已知),
∴(等量代換),
∴( ),
∴( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形MNOK和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形中,使OK邊與AB邊重合,如圖所示,按下列步驟操作: 將正方形在正六邊形中繞點B順時針旋轉(zhuǎn),使KM邊與BC邊重合,完成第一次旋轉(zhuǎn);再繞點C順時針旋轉(zhuǎn),使MN邊與CD邊重合,完成第二次旋轉(zhuǎn);…在這樣連續(xù)6次旋轉(zhuǎn)的過程中,點B,M間的距離可能是( )
A.1.4
B.1.1
C.0.8
D.0.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com