已知拋物線 經(jīng)過(-1,0),(0,-3),(2,-3)三點.
⑴求這條拋物線的解析式;
⑵寫出拋物線的開口方向、對稱軸和頂點坐標(biāo).
(1)拋物線的解析式為(2)拋物線的開口方向向上,對稱軸為,頂點坐標(biāo)為(1,-4).
已知了拋物線上三點坐標(biāo),可用待定系數(shù)法求出拋物線的解析式;進而可根據(jù)函數(shù)的解析式求出拋物線的開口方向,及對稱軸方程與頂點坐標(biāo)(用配方法或公式法求解均可).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(﹣1,0),C(2,3)兩點,與y軸交于點N.其頂點為D.

(1)拋物線及直線AC的函數(shù)關(guān)系式;
(2)設(shè)點M(3,m),求使MN+MD的值最小時m的值;
(3)若拋物線的對稱軸與直線AC相交于點B,E為直線AC上的任意一點,過點E作EF∥BD交拋物線于點F,以B,D,E,F(xiàn)為頂點的四邊形能否為平行四邊形?若能,求點E的坐標(biāo);若不能,請說明理由;
(4)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,半徑為1的圓的圓心在坐標(biāo)原點,且與兩坐標(biāo)軸分別交于四點.拋物線軸交于點,與直線交于點,且分別與圓相切于點和點
(1)求拋物線的解析式;
(2)拋物線的對稱軸交軸于點,連結(jié),并延長交圓,求的長.
(3)過點作圓的切線交的延長線于點,判斷點是否在拋物線上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

丁丁推鉛球的出手高度為,在如圖所示的直角坐標(biāo)系中,求鉛球的落點與丁丁的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩個關(guān)于的二次函數(shù),當(dāng)時,;且二次函數(shù)的圖象的對稱軸是直線
(1)求的值;
(2)求函數(shù)的表達式;
(3)在同一直角坐標(biāo)系內(nèi),問函數(shù)的圖象與的圖象是否有交點?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在一塊長方形鏡面玻璃的四周鑲上與它的周長相等的邊框,制成一面鏡子,鏡子的長與寬的比是2:1,已知鏡面玻璃的價格是每平方米120元,邊框的價格是每米30元,另外制作這面鏡子還需加工費45元.設(shè)制作這面鏡子的總費用是元,鏡子的寬是米.
(1)求之間的關(guān)系式.
(2)如果制作這面鏡子共花了195元,求這面鏡子的長和寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線與y軸的交點坐標(biāo)是( 。
A.(4,0)B.(-4,0)C.(0,-4)D.(0,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)是(    )
A.一次函數(shù)B.二次函數(shù)C.正比例函數(shù)D.反比例函數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=ax2+bx+c的圖象如圖,則下列結(jié)論:①abc>0;②a+b+c=2;③a>
1
2
;④b<1.其中正確的結(jié)論是( 。
A.①②B.②③C.②④D.③④

查看答案和解析>>

同步練習(xí)冊答案