【題目】如圖,菱形ABCD的邊長為2cm,∠DAB=60°.點(diǎn)P從A點(diǎn)出發(fā),以cm/s的速度,沿AC向C作勻速運(yùn)動(dòng);與此同時(shí),點(diǎn)Q也從A點(diǎn)出發(fā),以1cm/s的速度,沿射線AB作勻速運(yùn)動(dòng).當(dāng)P運(yùn)動(dòng)到C點(diǎn)時(shí),P、Q都停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).
(1)對(duì)角線AC的長是 cm;
(2)當(dāng)P異于A、C時(shí),請(qǐng)說明PQ∥BC;
(3)以P為圓心、PQ長為半徑作圓,請(qǐng)問:在整個(gè)運(yùn)動(dòng)過程中,t為怎樣的值時(shí),⊙P與邊BC分別有1個(gè)公共點(diǎn)和2個(gè)公共點(diǎn)?
【答案】(1)2$\sqrt{3}$;(2)見解析;(3)當(dāng)t=4﹣6或1<t≤3﹣或t=2時(shí),⊙P與菱形ABCD的邊BC有1個(gè)公共點(diǎn);當(dāng)4﹣6<t≤1時(shí),⊙P與邊BC有2個(gè)公共點(diǎn)
【解析】
(1)連接BD交AC于點(diǎn)O,由菱形的性質(zhì)可知△AOB為直角三角形且∠OAB=30°,依據(jù)特殊銳角三角函數(shù)值可求得AO的長,從而得到AC的長;
(2)連接BD交AC于O,構(gòu)建直角三角形AOB.利用菱形的對(duì)角線互相垂直、對(duì)角線平分對(duì)角、鄰邊相等的性質(zhì)推知△PAQ∽△CAB;然后根據(jù)“相似三角形的對(duì)應(yīng)角相等”證得∠APQ=∠ACB;最后根據(jù)平行線的判定定理“同位角相等,兩直線平行”可以證得結(jié)論;
(3)如圖2,⊙P與BC切于點(diǎn)M,連接PM,構(gòu)建Rt△CPM,在Rt△CPM利用特殊角的三角函數(shù)值求得PM=PC=,然后根據(jù)PM=PQ=AQ=t列出關(guān)于t的方程,通過解方程即可求得t的值;
如圖3,⊙P過點(diǎn)B,此時(shí)PQ=PB,根據(jù)等邊三角形的判定可以推知△PQB為等邊三角形,然后由等邊三角形的性質(zhì)以及(2)中求得t的值來確定此時(shí)t的取值范圍;
如圖4,⊙P過點(diǎn)C,此時(shí)PC=PQ,據(jù)此等量關(guān)系列出關(guān)于t的方程,通過解方程求得t的值.
(1)連接BD交AC于點(diǎn)O.
∵ABCD為菱形,∠DAB=60°,
∴∠OAB=30°,∠AOB=90°,AO=CO.
∴AO=AB×=2×=.
∴AC=2.
故答案為:2.
(2)∵四邊形ABCD是菱形,且菱形ABCD的邊長為2cm,
∴AB=BC=2,∠BAC=∠DAB,
又∵∠DAB=60°(已知),
∴∠BAC=∠BCA=30°;
如圖1,連接BD交AC于O.
∵四邊形ABCD是菱形,
∴AC⊥BD,OA=AC,
∴OB=AB=1(30°角所對(duì)的直角邊是斜邊的一半),
∴OA=(cm),AC=2OA=2(cm),
運(yùn)動(dòng)ts后,AP= t,AQ=t,
∴= =,
又∵∠PAQ=∠CAB,
∴△PAQ∽△CAB,
∴∠APQ=∠ACB(相似三角形的對(duì)應(yīng)角相等),
∴PQ∥BC(同位角相等,兩直線平行)
(2)如圖2,⊙P與BC切于點(diǎn)M,連接PM,則PM⊥BC.
在Rt△CPM中,∵∠PCM=30°,∴PM=PC=,由PM=PQ=AQ=t,即=t
解得t=4﹣6,此時(shí)⊙P與邊BC有一個(gè)公共點(diǎn);
如圖3,⊙P過點(diǎn)B,此時(shí)PQ=PB,
∵∠PQB=∠PAQ+∠APQ=60°
∴△PQB為等邊三角形,∴QB=PQ=AQ=t,∴t=1
∴當(dāng)4﹣6<t≤1時(shí),⊙P與邊BC有2個(gè)公共點(diǎn).
如圖4,⊙P過點(diǎn)C,此時(shí)PC=PQ,即2﹣t=t,∴t=3﹣.
∴當(dāng)1<t≤3﹣時(shí),⊙P與邊BC有一個(gè)公共點(diǎn),
當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C,即t=2時(shí)P與C重合,Q與B重合,也只有一個(gè)交點(diǎn),此時(shí),⊙P與邊BC有一個(gè)公共點(diǎn),
∴當(dāng)t=4﹣6或1<t≤3﹣或t=2時(shí),⊙P與菱形ABCD的邊BC有1個(gè)公共點(diǎn);
當(dāng)4﹣6<t≤1時(shí),⊙P與邊BC有2個(gè)公共點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)E,F(xiàn)分別是ABCD的邊BC,AD上的中點(diǎn),且∠BAC=90°,若∠B=30°,BC=10,則四邊形AECF的面積為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 隨著新學(xué)校建成越來越多,絕大部分孩子已能就近入學(xué),某數(shù)學(xué)學(xué)習(xí)興趣小組對(duì)八年級(jí)(1)班學(xué)生上學(xué)的交通方式進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果畫出下列兩個(gè)不完整的統(tǒng)計(jì)圖(圖1、圖2).請(qǐng)根據(jù)圖中的信息完成下列問題.
(1)該班參與本次問卷調(diào)查的學(xué)生共有多少人;
(2)請(qǐng)補(bǔ)全圖1中的條形統(tǒng)計(jì)圖;
(3)在圖2的扇形統(tǒng)計(jì)圖中,“騎車”所在扇形的圓心角的度數(shù)是多少度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的一條邊BC的長為5,另兩邊AB、AC的長是關(guān)于的一元二次方程的兩個(gè)實(shí)數(shù)根。
(1)求證:無論為何值時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根。
(2)為何值時(shí),△ABC是以BC為斜邊的直角三角形。
(3)為何值時(shí),△ABC是等腰三角形,并求△ABC的周長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H,G為⊙O上一點(diǎn),連接AG交CD于K,在CD的延長線上取一點(diǎn)E,使EG=EK,EG的延長線交AB的延長線于F.
(1)求證:EF是⊙O的切線;
(2)連接DG,若AC∥EF時(shí).
①求證:△KGD∽△KEG;
②若,AK=,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,相鄰兩條平行直線間的距離相等,若等腰直角三角形ABC的直角頂點(diǎn)C在上,另兩個(gè)頂點(diǎn)A、B分別在、上,則的值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l經(jīng)過A(6,0)和B(0,12)兩點(diǎn),且與直線y=x交于點(diǎn)C,點(diǎn)P(m,0)在x軸上運(yùn)動(dòng).
(1)求直線l的解析式;
(2)過點(diǎn)P作l的平行線交直線y=x于點(diǎn)D,當(dāng)m=3時(shí),求△PCD的面積;
(3)是否存在點(diǎn)P,使得△PCA成為等腰三角形?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸交于A,B兩點(diǎn),頂點(diǎn)C的縱坐標(biāo)為﹣2,現(xiàn)將拋物線向右平移2個(gè)單位,得到拋物線y=a1x2+b1x+c1,則下列結(jié)論:①b>0;②a﹣b+c<0;③陰影部分的面積為4;④若c=﹣1,則b2=4a.其中正確的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠家生產(chǎn)一種新型電子產(chǎn)品,制造時(shí)每件的成本為40元,通過試銷發(fā)現(xiàn),銷售量萬件與銷售單價(jià)元之間符合一次函數(shù)關(guān)系,其圖象如圖所示.
求y與x的函數(shù)關(guān)系式;
物價(jià)部門規(guī)定:這種電子產(chǎn)品銷售單價(jià)不得超過每件80元,那么,當(dāng)銷售單價(jià)x定為每件多少元時(shí),廠家每月獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com