20.對(duì)于任意不相等的兩個(gè)實(shí)數(shù)a,b,定義一種運(yùn)算定義運(yùn)算※如下:a※b=$\frac{\sqrt{(a-b)^{2}}}{b-a}$,例如2※3=$\frac{\sqrt{(2-3)^{2}}}{3-2}$=$\frac{\sqrt{(-1)^{2}}}{1}$=1,那么-3※(-2)=1.

分析 根據(jù)新定義的運(yùn)算解答,即可解答.

解答 解:-3※(-2)=$\frac{\sqrt{[(-3)-(-2)]^{2}}}{-2-(-3)}=\frac{\sqrt{(-1)^{2}}}{1}$=1,
故答案為:1.

點(diǎn)評(píng) 本題考查了實(shí)數(shù)的運(yùn)算,解決本題的關(guān)鍵是明確新定義的運(yùn)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.若單項(xiàng)式-$\frac{{2a{b^2}{c^4}}}{3}$的系數(shù)、次數(shù)分別是m、n,則(  )
A.m=$\frac{2}{3}$,n=6B.m=-$\frac{2}{3}$,n=6C.m=$\frac{2}{3}$,n=7D.m=-$\frac{2}{3}$,n=7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

11.若將方程2x2+6x-1=0化成2(x+m)2+n=1,則m=$\frac{3}{2}$,n=-$\frac{9}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.求證:N=5×32n+1×2n-3n×6n+2能被14整除.(N為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.已知點(diǎn)A(3,0),B(-1,0),C(0,2),以A,B,C,D為頂點(diǎn)畫平行四邊形,求第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.已知$\frac{1}{a}$-$\frac{1}$=2,則$\frac{ab}{2a+3ab-2b}$的值為(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在△ABC中,CD⊥AB于D,∠A=60°,∠B=45°,BC=4,
(1)求CD的長(zhǎng);
(2)求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

9.計(jì)算100x•100y+1的結(jié)果是( 。
A.100x+y+1B.102x+y+3C.102x+2y+3D.102x+2y+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為(0,2),(-3,0)和(4,0),動(dòng)點(diǎn)P從原點(diǎn)O出發(fā)(點(diǎn)P不與點(diǎn)O重合),沿著x軸的正方向以每秒1個(gè)單位的速度勻速運(yùn)動(dòng),過點(diǎn)P作直線l⊥x軸,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒)
(1)操作:
①在圖中畫出△ABO以點(diǎn)O為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)90°的圖形(記為△A′B′O′).
②在圖中畫出△A′B′O′關(guān)于直線l對(duì)稱的圖形(記為△A″B″O″).
(2)設(shè)△A″B″O″與△ABC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案