如圖,已知△ABC,按如下步驟作圖:
①分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點(diǎn)M、N;
②連接MN,分別交AB、AC于點(diǎn)D、O;
③過C作CE∥AB交MN于點(diǎn)E,連接AE、CD.
(1)求證:四邊形ADCE是菱形;
(2)當(dāng)∠ACB=90°,BC=6,△ADC的周長為18時(shí),求四邊形ADCE的面積.

【答案】分析:(1)利用直線DE是線段AC的垂直平分線,得出AC⊥DE,即∠AOD=∠COE=90°,進(jìn)而得出△AOD≌△COE,即可得出四邊形ADCE是菱形;
(2)利用當(dāng)∠ACB=90°時(shí),OD∥BC,即有△ADO∽△ABC,即可得出AC和DE的長即可得出四邊形ADCE的面積.
解答:(1)證明:由題意可知:
∵分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點(diǎn)M、N;
∴直線DE是線段AC的垂直平分線,
∴AC⊥DE,即∠AOD=∠COE=90°;
且AD=CD、AO=CO,
又∵CE∥AB,
∴∠1=∠2,
在△AOD和△COE中,
∴△AOD≌△COE,
∴OD=OE,
∵A0=CO,DO=EO,AC⊥DE,
∴四邊形ADCE是菱形;

(2)解:當(dāng)∠ACB=90°時(shí),
OD∥BC,
即有△ADO∽△ABC,
,
又∵BC=6,
∴OD=3,
又∵△ADC的周長為18,
∴AD+AO=9,
 即AD=9-AO,
∴OD==3,
可得AO=4,
∴DE=6,AC=8,
∴S=AC•DE=×8×6=24.
點(diǎn)評:此題主要考查了菱形的判定以及對角線垂直的四邊形面積求法,根據(jù)已知得出△ADO∽△ABC進(jìn)而求出AO的長是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC的三個頂點(diǎn)分別為A(2,3)、B(3,1)、C(-2,-2).
(1)請?jiān)趫D中作出△ABC關(guān)于直線x=-1的軸對稱圖形△DEF(A、B、C的對應(yīng)點(diǎn)分別是D、E、F),并直接寫出D、E、F的坐標(biāo);
(2)求四邊形ABED的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,已知△ABC和△CDE均為等邊三角形,且點(diǎn)B、C、D在同一條直線上,連接AD、BE,交CE和AC分別于G、H點(diǎn),連接GH.
(1)請說出AD=BE的理由;
(2)試說出△BCH≌△ACG的理由;
(3)試猜想:△CGH是什么特殊的三角形,并加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC,∠ACB=90°,AC=BC,點(diǎn)E、F在AB上,∠ECF=45°.
(1)求證:△ACF∽△BEC;
(2)設(shè)△ABC的面積為S,求證:AF•BE=2S;
(3)試判斷以線段AE、EF、FB為邊的三角形的形狀并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、(1)已知線段a,h,用直尺和圓規(guī)作等腰三角形ABC,底邊BC=a,BC邊上的高為h(要求尺規(guī)作圖,不寫作法和證明)
(2)如圖,已知△ABC,請作出△ABC關(guān)于X軸對稱的圖形.并寫出A、B、C關(guān)于X軸對稱的點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,已知△ABC是銳角三角形,且∠A=50°,高BE、CF相交于點(diǎn)O,求∠BOC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案