(2008•鹽城)如圖,直線(xiàn)y=x+b經(jīng)過(guò)點(diǎn)B(-,2),且與x軸交于點(diǎn)A,將拋物線(xiàn)y=x2沿x軸作左右平移,記平移后的拋物線(xiàn)為C,其頂點(diǎn)為P.
(1)求∠BAO的度數(shù);
(2)拋物線(xiàn)C與y軸交于點(diǎn)E,與直線(xiàn)AB交于兩點(diǎn),其中一個(gè)交點(diǎn)為F,當(dāng)線(xiàn)段EF∥x軸時(shí),求平移后的拋物線(xiàn)C對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)在拋物線(xiàn)y=x2平移過(guò)程中,將△PAB沿直線(xiàn)AB翻折得到△DAB,點(diǎn)D能否落在拋物線(xiàn)C上?如能,求出此時(shí)拋物線(xiàn)C頂點(diǎn)P的坐標(biāo);如不能,說(shuō)明理由.

【答案】分析:(1)因?yàn)辄c(diǎn)B(-,2)在直線(xiàn)y=x+b上,所以把B點(diǎn)坐標(biāo)代入解析式即可求出未知數(shù)的值,進(jìn)而求出其解析式.根據(jù)直線(xiàn)解析式可求出A點(diǎn)的坐標(biāo)及直線(xiàn)與y軸交點(diǎn)的坐標(biāo),根據(jù)銳角三角函數(shù)的定義即可求出∠BAO的度數(shù).
(2)根據(jù)拋物線(xiàn)平移的性質(zhì)可設(shè)出拋物線(xiàn)平移后的解析式,由拋物線(xiàn)上點(diǎn)的坐標(biāo)特點(diǎn)求出E點(diǎn)坐標(biāo)及對(duì)稱(chēng)軸直線(xiàn),根據(jù)EF∥x軸可知E,F(xiàn),兩點(diǎn)關(guān)于對(duì)稱(chēng)軸直線(xiàn)對(duì)稱(chēng),可求出F點(diǎn)的坐標(biāo),把此坐標(biāo)代入(1)所求的直線(xiàn)解析式就可求出未知數(shù)的值,進(jìn)而求出拋物線(xiàn)C的解析式.
(3)根據(jù)特殊角求出D點(diǎn)的坐標(biāo)表達(dá)式,將表達(dá)式代入(2)所求解析式,看能否計(jì)算出P點(diǎn)坐標(biāo),若能,則D點(diǎn)在拋物線(xiàn)C上.反之,不在拋物線(xiàn)上.
解答:解:(1)設(shè)直線(xiàn)與y軸交于點(diǎn)N,
將x=-,y=2代入y=x+b得b=3,
∴y=x+3,
當(dāng)x=0時(shí),y=3,當(dāng)y=0時(shí)x=-3
∴A(-3,0),N(0,3);
∴OA=3,ON=3,
∴tan∠BAO==
∴∠BAO=30°,

(2)設(shè)拋物線(xiàn)C的解析式為y=(x-t)2,則P(t,0),E(0,t2),
∵EF∥x軸且F在拋物線(xiàn)C上,根據(jù)拋物線(xiàn)的對(duì)稱(chēng)性可知F(2t,t2),
把x=2t,y=t2代入y=x+3
t+3=t2
解得t1=-,t2=3(1分)
∴拋物線(xiàn)C的解析式為y=(x+2或y=(x-32;

(3)假設(shè)點(diǎn)D落在拋物線(xiàn)C上,
不妨設(shè)此時(shí)拋物線(xiàn)頂點(diǎn)P(m,0),則拋物線(xiàn)C:y=(x-m)2,AP=3+m,
連接DP,作DM⊥x軸,垂足為M.由已知,得△PAB≌△DAB,
又∵∠BAO=30°,
∴△PAD為等邊三角形,
PM=AM=(3+m),
∴tan∠DAM==,
∴DM=(9+m),
OM=PM-OP=(3+m)-t=(3-m),
∴M=[-(3-m),0],
∴D[-(3-m),(9+m)],
∵點(diǎn)D落在拋物線(xiàn)C上,
(9+m)=[-(3-m)-m2,即m2=27,m=±3
當(dāng)m=-3時(shí),此時(shí)點(diǎn)P(-3,0),點(diǎn)P與點(diǎn)A重合,不能構(gòu)成三角形,不符合題意,舍去.
當(dāng)m=3時(shí)P為(3,0)此時(shí)可以構(gòu)成△DAB,
所以點(diǎn)P為(3,0),
∴當(dāng)點(diǎn)D落在拋物線(xiàn)C上,頂點(diǎn)P為(3,0).
點(diǎn)評(píng):此題將拋物線(xiàn)與直線(xiàn)相結(jié)合,涉及到動(dòng)點(diǎn)問(wèn)題,翻折變換問(wèn)題,有一定的難度.
尤其(3)題是一道開(kāi)放性問(wèn)題,需要進(jìn)行探索.要求同學(xué)們有一定的創(chuàng)新能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2009年湖北省黃石市中考數(shù)學(xué)調(diào)研試卷(解析版) 題型:解答題

(2008•鹽城)如圖,直線(xiàn)y=x+b經(jīng)過(guò)點(diǎn)B(-,2),且與x軸交于點(diǎn)A,將拋物線(xiàn)y=x2沿x軸作左右平移,記平移后的拋物線(xiàn)為C,其頂點(diǎn)為P.
(1)求∠BAO的度數(shù);
(2)拋物線(xiàn)C與y軸交于點(diǎn)E,與直線(xiàn)AB交于兩點(diǎn),其中一個(gè)交點(diǎn)為F,當(dāng)線(xiàn)段EF∥x軸時(shí),求平移后的拋物線(xiàn)C對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)在拋物線(xiàn)y=x2平移過(guò)程中,將△PAB沿直線(xiàn)AB翻折得到△DAB,點(diǎn)D能否落在拋物線(xiàn)C上?如能,求出此時(shí)拋物線(xiàn)C頂點(diǎn)P的坐標(biāo);如不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年江蘇省鹽城市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•鹽城)如圖,直線(xiàn)y=x+b經(jīng)過(guò)點(diǎn)B(-,2),且與x軸交于點(diǎn)A,將拋物線(xiàn)y=x2沿x軸作左右平移,記平移后的拋物線(xiàn)為C,其頂點(diǎn)為P.
(1)求∠BAO的度數(shù);
(2)拋物線(xiàn)C與y軸交于點(diǎn)E,與直線(xiàn)AB交于兩點(diǎn),其中一個(gè)交點(diǎn)為F,當(dāng)線(xiàn)段EF∥x軸時(shí),求平移后的拋物線(xiàn)C對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)在拋物線(xiàn)y=x2平移過(guò)程中,將△PAB沿直線(xiàn)AB翻折得到△DAB,點(diǎn)D能否落在拋物線(xiàn)C上?如能,求出此時(shí)拋物線(xiàn)C頂點(diǎn)P的坐標(biāo);如不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(07)(解析版) 題型:解答題

(2008•鹽城)如圖,在12×12的正方形網(wǎng)格中,△TAB的頂點(diǎn)坐標(biāo)分別為T(mén)(1,1)、A(2,3)、B(4,2)
(1)以點(diǎn)T(1,1)為位似中心,按比例尺(TA′:TA)=3:1在位似中心的同側(cè)將△TAB放大為△TA′B′,放大后點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別為A′、B′.畫(huà)出△TA′B′,并寫(xiě)出點(diǎn)A′、B′的坐標(biāo);
(2)在(1)中,若C(a,b)為線(xiàn)段AB上任一點(diǎn),寫(xiě)出變化后點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省江陰市中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

(2008•鹽城)如圖,正方形卡片A類(lèi),B類(lèi)和長(zhǎng)方形卡片C類(lèi)若干張,如果要拼一個(gè)長(zhǎng)為(a+2b),寬為(a+b)的大長(zhǎng)方形,則需要C類(lèi)卡片    張.

查看答案和解析>>

同步練習(xí)冊(cè)答案