【題目】省城太原某大型超市計(jì)劃在12月23日推出“十周年”店慶促銷活動(dòng),該超市為本次促銷活動(dòng)設(shè)計(jì)了兩種促銷方案.方案一:全場(chǎng)商品全部打8.5折;方案二:商品總價(jià)不超過200元時(shí),不打折,超過200元的部分打7折.小穎的爸爸媽媽準(zhǔn)備在該超市促銷活動(dòng)期間去購物.
(1)小穎的爸爸媽媽購買的商品總價(jià)為元(),按方案一應(yīng)該支付 元;按方案二應(yīng)該支付 元;(用含的代數(shù)式表示)
(2)若小穎的爸爸媽媽購買的商品總價(jià)為300元,請(qǐng)你幫助小穎計(jì)算一下,按哪種方案支付更劃算;
(3)若小穎的爸爸媽媽購買的商品總價(jià)為500元,請(qǐng)你幫助小穎計(jì)算一下,按哪種方案支付更劃算.
【答案】(1),;(2)按方案一支付更劃算,見解析;(3)按方案二支付更劃算,見解析
【解析】
(1)方案一全場(chǎng)商品全部打8.5折,原價(jià)乘以折扣即可;方案二分段計(jì)算,不打折部分200元,打折部分元,打7折后為元,兩部分相加化簡(jiǎn)即可.
(2)將元分別代入第(1)得到的兩個(gè)代數(shù)式求值比較即可.
(3)將元分別代入第(1)得到的兩個(gè)代數(shù)式求值比較即可.
解:(1),
.
(2)當(dāng)小穎的爸爸媽媽購買的商品總價(jià)為300元時(shí),
按方案一需支付: (元).
按方案二需支付: (元).
,
∴按方案一支付更劃算.
(3)當(dāng)小穎的爸爸媽媽購買的商品總價(jià)為500元時(shí),
按方案一需支付: (元).
按方案二需支付: (元).
,
∴按方案二支付更劃算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲騎自行車從M地出發(fā)沿一條公路勻速前往N地,乙騎摩托車從N地出發(fā)沿同一條公路勻速前往M地,
已知乙比甲晚出發(fā)0.5小時(shí)且先到達(dá)目的地.設(shè)甲行駛的時(shí)間為t(h),甲乙兩人之間的路程為y(km),
y與t的函數(shù)關(guān)系如圖1所示,請(qǐng)解決以下問題:
(1)寫出圖1中點(diǎn)C表示的實(shí)際意義并求線段BC所在直線的函數(shù)表達(dá)式.
(2)①求點(diǎn)D的縱坐標(biāo).
②求M,N兩地之間的距離.
(3)設(shè)乙離M地的路程為S乙 (km),請(qǐng)直接寫出S甲 與時(shí)間t(h)的函數(shù)表達(dá)式,并在圖2所給的直角坐標(biāo)系中畫出它的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)a a3a5
(2)(x6)2+(x3)4+x12
(3)
(4)(-3a2b3)(-2ab3c)3
(5)
(6)(x+2)(x-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:Rt△ABC 中,AC=BC,∠ACB=90°,D 為 BC 邊中點(diǎn),CF⊥AD 交 AD 于 E,交 AB 于 F,BE交 AC 于 G,連 DF,下列結(jié)論:①AC=AF,②CD+DF=AD,③∠ADC=∠BDF,④CE=BE,⑤∠ BED=45°,其中正確的有( )
A. 5 個(gè)B. 4 個(gè)C. 3 個(gè)D. 2 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E,F(xiàn)分別為邊AB,CD的中點(diǎn),BD是對(duì)角線.
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,請(qǐng)證明四邊形BEDF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐:某“綜合與實(shí)踐”小組開展了“正方體紙盒的制作”實(shí)踐活動(dòng),他們利用長為,寬為長方形紙板制作出兩種不同方案的正方體盒子, 請(qǐng)你動(dòng)手操作驗(yàn)證并完成任務(wù).(紙板厚度及接縫處忽略不計(jì))
動(dòng)手操作一:
如圖1,若,按如圖1所示的方式先在紙板四角剪去四個(gè)同樣大小邊長為的小正方形,再沿虛線折合起來就可以做成一個(gè)無蓋的正方體紙盒.
問題解決:(1)此時(shí),你發(fā)現(xiàn)與之間存在的數(shù)量關(guān)系為 .
動(dòng)手操作二:
如圖2,若,現(xiàn)在在紙板的四角剪去兩個(gè)小正方形和兩個(gè)小長方形恰好可以制作成一個(gè)有蓋的正方體紙盒,其大小與(1)中無蓋正方體大小一樣.
拓展延伸:(2)請(qǐng)你在圖2中畫出你剪去的兩個(gè)小正方形和兩個(gè)小長方形(用陰影表示),折痕用虛線表示;
(3)此時(shí),你發(fā)現(xiàn)與之間存在的數(shù)量關(guān)系為 ;若,求有蓋正方體紙盒的表面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AB=8,點(diǎn)C和點(diǎn)D是⊙O上關(guān)于直線AB對(duì)稱的兩個(gè)點(diǎn),連接OC、AC,且∠BOC<90°,直線BC和直線AD相交于點(diǎn)E,過點(diǎn)C作直線CG與線段AB的延長線相交于點(diǎn)F,與直線AD相交于點(diǎn)G,且∠GAF=∠GCE
(1)求證:直線CG為⊙O的切線;
(2)若點(diǎn)H為線段OB上一點(diǎn),連接CH,滿足CB=CH,
①△CBH∽△OBC
②求OH+HC的最大值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過點(diǎn)F的反比例函數(shù)y= (x>0)的圖象與BC邊交于點(diǎn)E.
(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;
(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一副三角板的直角頂點(diǎn)O重疊在一起,
(1)如圖(1),當(dāng)OB平分∠COD時(shí),則∠AOD和∠BOC的和是多少度?
(2)如圖(2),當(dāng)OB不平分∠COD時(shí),則∠AOD和∠BOC的和是多少度?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com