【題目】已知:如圖,在四邊形ABCD中,過A,C分別作AD和BC的垂線,交對角線BD于點E,F,AE=CF,BE=DF.
(1)求證:四邊形ABCD是平行四邊形;
(2)若BC=4,∠CBD=45°,且E,F是BD的三等分點,求四邊形ABCD的面積.(直接寫出結(jié)論即可)
【答案】(1)證明見解析;(2)24.
【解析】
(1)證Rt△ADE≌Rt△CBF(HL),得AD=BC,∠ADE=∠CBF,AD∥BC,故四邊形ABCD是平行四邊形;(2)過C作CH⊥BD于H,證△CBF是等腰直角三角形,得BF=BC=4,CH=BC=2,得BD=6,故四邊形ABCD的面積=BDCH.
(1)證明:∵AE⊥AD,CF⊥BC,
∴∠DAE=∠BCF=90°,
∵BE=DF,
∴BE+EF=DF+EF,
即BF=DE,
在Rt△ADE與Rt△CBF中,
∴Rt△ADE≌Rt△CBF(HL),
∴AD=BC,∠ADE=∠CBF,
∴AD∥BC,
∴四邊形ABCD是平行四邊形;
(2)解:過C作CH⊥BD于H,
∵∠CBD=45°,
∴△CBF是等腰直角三角形,
∴BF=BC=4,CH=BC=2,
∵E,F是BD的三等分點,
∴BD=6,
∴四邊形ABCD的面積=BDCH=24.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OD平分∠BOE,OF平分∠AOE
(1)判斷OF與OD的位置關(guān)系,并進(jìn)行證明.
(2)若∠AOC:∠AOD=1:5,求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠1=∠2,G為AD的中點,延長BG交AC于E、 F為AB上的一點,CF⊥AD于H,下列判斷正確的有( )
A.AD是△ABE的角平分線B.BE是△ABD邊AD上的中線
C.AH為△ABC的角平分線D.CH為△ACD邊AD上的高
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中, 對角線AC、BD相交于點O. E、F是對角線AC上的兩個不同點,當(dāng)E、F兩點滿足下列條件時,四邊形DEBF不一定是平行四邊形( ).
A.AE=CFB.DE=BFC.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某綜合實踐小組為了了解本校學(xué)生參加課外讀書活動的情況,隨機(jī)抽取部分學(xué)生,調(diào)查其最喜歡的圖書類別,并根據(jù)調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計表與統(tǒng)計圖:
圖書類別 | 畫記 | 人數(shù) | 百分比 | ||
文學(xué)類 | |||||
藝體類 | 正 | 5 | |||
科普類 | |||||
其他 | 正正 | 14 | |||
合計 | a | 100% |
請結(jié)合圖中的信息解答下列問題:
(1)隨機(jī)抽取的樣本容量為________;
(2)在扇形統(tǒng)計圖中,“藝體類”所在的扇形圓心角應(yīng)等于_________度;
(3)補全條形統(tǒng)計圖;
(4)已知該校有名學(xué)生,估計全校最喜歡文學(xué)類圖書的學(xué)生有________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小剛做游戲一個不透明的布袋里裝有4個大小、質(zhì)地均相同的乒乓球,球上分別標(biāo)有數(shù)字1,2,3,4,隨機(jī)從布袋中摸出一個乒乓球,記下數(shù)字后放回布袋里,再隨機(jī)從布袋中摸出一個乒乓球,若這兩個乒乓球上的數(shù)字之和能被4整除則小明贏;若兩個乒乓球上的數(shù)字之和能被5整除則小剛贏;這個一個對游戲雙方公平的游戲嗎?請列表格或畫樹狀圖說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD中,AB=4cm,點P從點D出發(fā)沿DA向點A勻速運動,速度是1cm/s,同時,點Q從點A出發(fā)沿AB方向,向點B勻速運動,速度是2cm/s,連接PQ、CP、CQ,設(shè)運動時間為t(s)(0<t<2)
(1)是否存在某一時刻t,使得PQ∥BD?若存在,求出t值;若不存在,說明理由
(2)設(shè)△PQC的面積為s(cm2),求s與t之間的函數(shù)關(guān)系式;
(3)如圖2,連接AC,與線段PQ相交于點M,是否存在某一時刻t,使S△QCM:S△PCM=3:5?若存在,求出t值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,兩邊PE、PF分別交AB、AC于點E、F,當(dāng)∠EPF在△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點E不與A、B重合),給出以下四個結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③2S四邊形AEPF=S△ABC;④BE+CF=EF.上述結(jié)論中始終正確的有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,作射線AP,交CD于點M。
(1)若∠ACD=114°,求∠MAB的度數(shù);
(2)若CN⊥AM,垂足為N,求證:△ACN≌△MCN。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com