【題目】(1)問(wèn)題背景
如圖①,BC是⊙O的直徑,點(diǎn)A在⊙O上,AB=AC,P為上一動(dòng)點(diǎn)(不與B,C重合),
求證:PA=PB+PC.
請(qǐng)你根據(jù)小明同學(xué)的思考過(guò)程完成證明過(guò)程.
(2)類(lèi)比遷移
如圖②,⊙O的半徑為3,點(diǎn)A,B在⊙O上,C為⊙O內(nèi)一點(diǎn),AB=AC,AB⊥AC,垂足為A,求OC的最小值.
(3)拓展延伸
如圖,⊙O的半徑為3,點(diǎn)A,B在⊙O上,C為⊙O內(nèi)一點(diǎn),AB=AC,AB⊥AC,垂足為A,則OC的最小值為 .
【答案】(1)證明見(jiàn)解析(2)3-2(3)
【解析】
分析: (1)將△PAC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°至△QAB(如圖①),只要證明△APQ是等腰直角三角形即可解決問(wèn)題,(2)如圖②中,連接OA,將△OAC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°至△QAB,連接OB,OQ,在△BOQ中,利用三邊關(guān)系定理即可解決問(wèn)題,
(3)如圖③構(gòu)造相似三角形即可解決問(wèn)題,作AQ⊥OA,使得AQ=OA,連接OQ,BQ,OB,
由△QAB∽△OAC,推出BQ=OC,當(dāng)BQ最小時(shí),OC最小.
詳解:(1)證明:∵BC是直徑,
∴∠BAC=90°,
∵AB=AC,
∴∠ACB=∠ABC=45°,
由旋轉(zhuǎn)可得∠QBA=∠PCA,∠ACB=∠APB=45°,PC=QB,
∵∠PCA+∠PBA=180°,
∴∠QBA+∠PBA=180°,
∴Q,B,P三點(diǎn)共線,
∴∠QAB+∠BAP=∠BAP+∠PAC=90°
∴QP2=AP2+AQ2=2AP2
∴QP=AP=QB+BP=PC+PB,
∴AP=PC+PB,
(2)解:連接OA,將△OAC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°至△QAB,連接OB,OQ,
∵AB⊥AC,
∴∠BAC=90°.
由旋轉(zhuǎn)可得 QB=OC.AQ=OA.∠QAB=∠OAC.
∴∠QAB+∠BAO=∠BAO+∠OAC=90°.
∴在Rt△OAQ中.OQ=3,AO=3,
∴在△OQB中,BQ≥OQ-OB=3-3,
即OC最小值是3-3,
(3)如圖中,作AQ⊥OA,使得AQ=OA,連接OQ,BQ,OB,
∵∠QAO=∠BAC=90°,
∠QAB=∠OAC,
∵,
∴△QAB∽△OAC,
∴BQ=OC,
當(dāng)BQ最小時(shí),OC最小,易知OA=3,AQ=4,OQ=5,BQ≥OQ-OB,
∴OQ≥2,
∴BQ的最小值為2,
∴OC的最小值為,故答案為.
點(diǎn)睛: 本題考查圓綜合題,全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),勾股定理,三角形的三邊關(guān)系等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用旋轉(zhuǎn)法添加常用輔助線,構(gòu)造全等三角形或相似三角形解決問(wèn)題,屬于中考?jí)狠S題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解本校七年級(jí)學(xué)生的視力情況(視力情況分為:不近視,輕度近視,中度近視,重度近視),隨機(jī)對(duì)七年級(jí)的部分學(xué)生進(jìn)行了抽樣調(diào)查,將調(diào)查結(jié)果進(jìn)行整理后,繪制了如下不完整的統(tǒng)計(jì)圖,其中中度近視人數(shù)是不近視與重度近視人數(shù)之和的一半.
請(qǐng)你根據(jù)以上信息解答下列問(wèn)題:
(1)求本次調(diào)查的學(xué)生人數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖.在扇形統(tǒng)計(jì)圖中,求“中度近視”對(duì)應(yīng)扇形的圓心角的度數(shù);
(3)若該校七年級(jí)學(xué)生有1200人,請(qǐng)你估計(jì)該校七年級(jí)近視(包括輕度近視,中度近視,重度近視)的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列命題:
①兩組對(duì)角分別相等的四邊形是平行四邊形;
②一組對(duì)邊平行,一組對(duì)角相等的四邊形是平行四邊形;
③一組對(duì)邊平行,另一組對(duì)邊相等的四邊形是平行四邊形;
④一組對(duì)邊平行,一條對(duì)角線被另一條對(duì)角線平分的四邊形是平行四邊形;
⑤一組對(duì)邊相等,一組對(duì)角相等的四邊形是平行四邊形,
(1)上述五個(gè)命題中,是真命題的是 (填寫(xiě)序號(hào))
(2)請(qǐng)選擇一個(gè)假命題,并舉反例說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了備戰(zhàn)初三物理、化學(xué)實(shí)驗(yàn)操作考試,某校對(duì)初三學(xué)生進(jìn)行了模擬訓(xùn)練,物理、化學(xué)各有4各不同的操作實(shí)驗(yàn)題目,物理用番號(hào)①、②、③、④代表,化學(xué)用字母a、b、c、d表示,測(cè)試時(shí)每名學(xué)生每科只操作一個(gè)實(shí)驗(yàn),實(shí)驗(yàn)的題目由學(xué)生抽簽確定,第一次抽簽確定物理實(shí)驗(yàn)題目,第二次抽簽確定化學(xué)實(shí)驗(yàn)題目.
(1)請(qǐng)用樹(shù)形圖法或列表法,表示某個(gè)同學(xué)抽簽的各種可能情況.
(2)小張同學(xué)對(duì)物理的①、②和化學(xué)的b、c號(hào)實(shí)驗(yàn)準(zhǔn)備得較好,他同時(shí)抽到兩科都準(zhǔn)備的較好的實(shí)驗(yàn)題目的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠BAD+∠ADC=180°,AE平分∠BAD,CD與AE相交于F,DG交BC的,延長(zhǎng)線于G,∠CFE=∠AEB
(1)若∠B=87°,求∠DCG的度數(shù);
(2)AD與BC是什么位置關(guān)系?并說(shuō)明理由;
(3)若∠DAB=α,∠DGC=β,直接寫(xiě)出α、β滿足什么數(shù)量關(guān)系時(shí),AE∥DG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù),它與軸交于、,且、位于原點(diǎn)兩側(cè),與的正半軸交于,頂點(diǎn)在軸右側(cè)的直線:上,則下列說(shuō)法:① ② ③ ④其中正確的結(jié)論有( )
A.①②B.②③C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:⊙O為△ABC的外接圓,AB=AC,E是AB的中點(diǎn),連OE,OE=,BC=8,則⊙O的半徑為( 。
A. 3 B. C. D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,甲、乙兩車(chē)沿直路同向行駛,車(chē)速分別為20 m/s和v(m/s),起初甲車(chē)在乙 車(chē)前a (m)處,兩車(chē)同時(shí)出發(fā),當(dāng)乙車(chē)追上甲車(chē)時(shí),兩車(chē)都停止行駛.設(shè)x(s)后兩車(chē)相距y (m),y與x的函數(shù)關(guān)系如圖2所示.有以下結(jié)論:
①圖1中a的值為500;
②乙車(chē)的速度為35 m/s;
③圖1中線段EF應(yīng)表示為;
④圖2中函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo)為100.
其中所有的正確結(jié)論是( )
A. ①④ B. ②③
C. ①②④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)E、F,則線段B′F的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com