【題目】如圖,在平行四邊形中,、相交于點(diǎn),點(diǎn)是的中點(diǎn),連接并延長(zhǎng)交于點(diǎn),,則下列結(jié)論:①;②;③;④,其中一定正確的是( ).
A.①②③④B.①②C.②③④D.①②③
【答案】D
【解析】
①根據(jù)平行四邊形的性質(zhì)可得出CE=3AE,由AF∥BC可得出△AEF∽△CEB,根據(jù)相似三角形的性質(zhì)可得出BC=3AF,進(jìn)而可得出DF=2AF,結(jié)論①正確;
②根據(jù)相似三角形的性質(zhì)結(jié)合S△AEF=4,即可求出S△BCE=9S△AEF=36,結(jié)論②正確;
③由△ABE和△CBE等高且BE=3AE,即可得出S△BCE=3S△ABE,進(jìn)而可得出S△ABE=12,結(jié)論③正確;
④假設(shè)△AEF∽△ACD,根據(jù)相似三角形的性質(zhì)可得出∠AEF=∠ACD,進(jìn)而可得出BF∥CD,根據(jù)平行四邊形的性質(zhì)可得出AB∥CD,由AB、BF不共線可得出假設(shè)不成立,即AEF和△ACD不相似,結(jié)論④錯(cuò)誤.綜上即可得出結(jié)論.
①∵四邊形為平行四邊形,
∴,,.
∵點(diǎn)是的中點(diǎn),
∴.
∵,
∴,
∴,
∴,
∴,結(jié)論①正確;
②∵,,
∴,
∴,結(jié)論②正確;
③∵和等高,且,
∴,
∴,結(jié)論③正確;
④假設(shè),則,
∴,即.
∵,
∴和共線.
∵點(diǎn)為的中點(diǎn),即與不共線,
∴假設(shè)不成立,即和不相似,結(jié)論④錯(cuò)誤.
綜上所述:正確的結(jié)論有①②③.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,對(duì)角線AC,BD相交于點(diǎn)E,F是邊BA延長(zhǎng)線上一點(diǎn),連接EF,以EF為直徑作⊙O,交DC于D,G兩點(diǎn),AD分別于EF,GF交于I,H兩點(diǎn).
(1)求∠FDE的度數(shù);
(2)試判斷四邊形FACD的形狀,并證明你的結(jié)論;
(3)當(dāng)G為線段DC的中點(diǎn)時(shí),
①求證:FD=FI;
②設(shè)AC=2m,BD=2n,求⊙O的面積與菱形ABCD的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,AB=10,AC=6,點(diǎn)E、F分別是邊AC、BC上的動(dòng)點(diǎn),過點(diǎn)E作ED⊥AB于點(diǎn)D,過點(diǎn)F作FG⊥AB于點(diǎn)G,DG的長(zhǎng)始終為2.
(1)當(dāng)AD=3時(shí),求DE的長(zhǎng);
(2)當(dāng)點(diǎn)E、F在邊AC、BC上移動(dòng)時(shí),設(shè),求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)的定義域;
(3) 在點(diǎn)E、F移動(dòng)過程中,△AED與△CEF能否相似,若能,求AD的長(zhǎng);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于A、B兩點(diǎn),AB=4,交y軸于點(diǎn)C,對(duì)稱軸是直線x=1.
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)連接BC,E是線段OC上一點(diǎn),E關(guān)于直線x=1的對(duì)稱點(diǎn)F正好落在BC上,求點(diǎn)F的坐標(biāo);
(3)動(dòng)點(diǎn)M從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng),過M作x軸的垂線交拋物線于點(diǎn)N,交線段BC于點(diǎn)Q.設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
①若△AOC與△BMN相似,請(qǐng)直接寫出t的值;
②△BOQ能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C,P均在⊙O上,且分布在直徑AB的兩側(cè),BE⊥CP于點(diǎn)E.
(1)求證:△CAB∽△EPB;
(2)若AB=10,AC=6,BP=5,求CP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸的交點(diǎn)為A,B(點(diǎn)A 在點(diǎn)B的左側(cè)).
(1)求點(diǎn)A,B的坐標(biāo);
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫整點(diǎn).
①直接寫出線段AB上整點(diǎn)的個(gè)數(shù);
②將拋物線沿翻折,得到新拋物線,直接寫出新拋物線在軸上方的部分與線段所圍成的區(qū)域內(nèi)(包括邊界)整點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一塊斜邊長(zhǎng)30cm的直角三角形木板(Rt△ACB)上截取一個(gè)正方形CDEF,點(diǎn)D在邊BC上,點(diǎn)E在斜邊AB上,點(diǎn)F在邊AC上,若AF:AC=1:3,則這塊木板截取正方形CDEF后,剩余部分的面積為( )
A. 100cm2B. 150cm2C. 170cm2D. 200cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E是以A為圓心,以2為半徑的圓上一 動(dòng)點(diǎn),連結(jié)CE,點(diǎn)P為CE的中點(diǎn),連結(jié)BP,若AC=,BD=,則BP的最大值為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com