(本題滿分12分)在平面直角坐標系中,拋物線y=x2+(k﹣1)x﹣k與直線y=kx+1交于A,B兩點,點A在點B的左側(cè).

(1)如圖1,當k=1時,直接寫出A,B兩點的坐標;

(2)在(1)的條件下,點P為拋物線上的一個動點,且在直線AB下方,試求出△ABP面積的最大值及此時點P的坐標;

(3)如圖2,拋物線y=x2+(k﹣1)x﹣k(k>0)與x軸交于點C、D兩點(點C在點D的左側(cè)),在直線y=kx+1上是否存在唯一一點Q,使得∠OQC=90°?若存在,請求出此時k的值;若不存在,請說明理由.

(1)A(﹣1,0),B(2,3);(2)點P坐標為(,﹣);(3)k=

【解析】

試題分析:(1) 當k=1時,拋物線解析式為y=x2﹣1,直線解析式為y=x+1,然后解方程組即可;

(2) 設(shè)P(x,x2﹣1).過點P作PF∥y軸,交直線AB于點F,則F(x,x+1),所以利用S△ABP=S△PFA+S△PFB,

,用含x的代數(shù)式表示為S△ABP=﹣x2+x+2,配方或用公式確定頂點坐標即可.(3) 設(shè)直線AB:y=kx+1與x軸、y軸分別交于點E、F,用k分別表示點E的坐標,點F的坐標,以及點C的坐標,然后在Rt△EOF中,由勾股定理表示出EF的長,假設(shè)存在唯一一點Q,使得∠OQC=90°,則以O(shè)C為直徑的圓與直線AB相切于點Q,設(shè)點N為OC中點,連接NQ,根據(jù)條件證明△EQN∽△EOF,然后根據(jù)性質(zhì)對應(yīng)邊成比例,可得關(guān)于k的方程,解方程即可.

試題解析:【解析】
(1)當k=1時,拋物線解析式為y=x2﹣1,直線解析式為y=x+1.

聯(lián)立兩個解析式,得:x2﹣1=x+1,

解得:x=﹣1或x=2,

當x=﹣1時,y=x+1=0;當x=2時,y=x+1=3,

∴A(﹣1,0),B(2,3). 4分

(2)設(shè)P(x,x2﹣1).

如答圖2所示,過點P作PF∥y軸,交直線AB于點F,則F(x,x+1).

∴PF=yF﹣yP=(x+1)﹣(x2﹣1)=﹣x2+x+2.

S△ABP=S△PFA+S△PFB=PF(xF﹣xA)+PF(xB﹣xF)=PF(xB﹣xA)=PF

∴S△ABP=(﹣x2+x+2)=﹣(x﹣)2+

當x=時,yP=x2﹣1=﹣

∴△ABP面積最大值為,此時點P坐標為(,﹣). 8分

(3)設(shè)直線AB:y=kx+1與x軸、y軸分別交于點E、F,

則E(﹣,0),F(xiàn)(0,1),OE=,OF=1.

在Rt△EOF中,由勾股定理得:EF==

令y=x2+(k﹣1)x﹣k=0,即(x+k)(x﹣1)=0,解得:x=﹣k或x=1.

∴C(﹣k,0),OC=k.

假設(shè)存在唯一一點Q,使得∠OQC=90°,如答圖3所示,

則以O(shè)C為直徑的圓與直線AB相切于點Q,根據(jù)圓周角定理,此時∠OQC=90°.

設(shè)點N為OC中點,連接NQ,則NQ⊥EF,NQ=CN=ON=

∴EN=OE﹣ON=

∵∠NEQ=∠FEO,∠EQN=∠EOF=90°,

∴△EQN∽△EOF,

,即:

解得:k=±,

∵k>0,

∴k=

∴存在唯一一點Q,使得∠OQC=90°,此時k=. 12分

考點:1.二次函數(shù)的性質(zhì)及其應(yīng)用;2.圓的性質(zhì);3.相似三角形的判定與性質(zhì).

考點分析: 考點1:二次函數(shù) 定義:
一般地,如果(a,b,c是常數(shù),a≠0),那么y叫做x 的二次函數(shù)。
①所謂二次函數(shù)就是說自變量最高次數(shù)是2;
②二次函數(shù)(a≠0)中x、y是變量,a,b,c是常數(shù),自變量x 的取值范圍是全體實數(shù),b和c可以是任意實數(shù),a是不等于0的實數(shù),因為a=0時,變?yōu)閥=bx+c若b≠0,則y=bx+c是一次函數(shù),若b=0,則y=c是一個常數(shù)函數(shù)。
③二次函數(shù)(a≠0)與一元二次方程(a≠0)有密切聯(lián)系,如果將變量y換成一個常數(shù),那么這個二次函數(shù)就是一個一元二次函數(shù)。 二次函數(shù)的解析式有三種形式:
(1)一般式:(a,b,c是常數(shù),a≠0);
(2)頂點式: (a,h,k是常數(shù),a≠0)
(3)當拋物線與x軸有交點時,即對應(yīng)二次好方程有實根x1和x2存在時,根據(jù)二次三項式的分解因式,二次函數(shù)可轉(zhuǎn)化為兩根式。如果沒有交點,則不能這樣表示。

二次函數(shù)的一般形式的結(jié)構(gòu)特征:
①函數(shù)的關(guān)系式是整式;
②自變量的最高次數(shù)是2;
③二次項系數(shù)不等于零。 二次函數(shù)的判定:
二次函數(shù)的一般形式中等號右邊是關(guān)于自變量x的二次三項式;
當b=0,c=0時,y=ax2是特殊的二次函數(shù);
判斷一個函數(shù)是不是二次函數(shù),在關(guān)系式是整式的前提下,如果把關(guān)系式化簡整理(去括號、合并同類項)后,能寫成(a≠0)的形式,那么這個函數(shù)就是二次函數(shù),否則就不是。 試題屬性
  • 題型:
  • 難度:
  • 考核:
  • 年級:
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年山東省濱州市九年級下學(xué)期4月模擬數(shù)學(xué)試卷(解析版) 題型:填空題

已知x、y是二元一次方程組的解,則代數(shù)式的值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年遼寧省東港市九年級九校聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題

-8的絕對值是( )

A.-8 B.8 C.±8 D.-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省揚州市片九年級3月月考數(shù)學(xué)試卷(解析版) 題型:填空題

小軍的期末總評成績由平時、期中、期末成績按權(quán)重比1:1:8 組成,現(xiàn)小軍平時考試得90分,期中考試得60分,要使他的總評成績不低于79分,那么小軍的期末考試成績滿足的條件是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省鹽城市鹽都區(qū)西片九年級下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分10分)如圖,在菱形ABCD中,AB=2,,點E是AD邊的中點,點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.

(1)求證:四邊形AMDN是平行四邊形;

(2)填空:①當AM的值為 時,四邊形AMDN是矩形;

②當AM的值為 時,四邊形AMDN是菱形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省鹽城市鹽都區(qū)西片九年級下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,在中,、分別是邊、的中點,.現(xiàn)將沿折疊,點

落在三角形所在平面內(nèi)的點為,則的度數(shù)為 °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省聯(lián)盟九年級下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(12分)如圖,AB為半圓的直徑,O為圓心,C為圓弧上一點,AD垂直于過C點的切線,垂足為D,AB的延長線交直線CD于點E.

(1)求證:AC平分∠DAB;

(2)若AB=4,B為OE的中點,CF⊥AB,垂足為點F,求CF的長;

(3)如圖2,連接OD交AC于點G,若=,求sin∠E的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省無錫市九年級4月階段檢測數(shù)學(xué)試卷(解析版) 題型:填空題

因式分解2-8x=

查看答案和解析>>

同步練習冊答案