根據(jù)所給的基本材料,請(qǐng)你進(jìn)行適當(dāng)?shù)奶幚,編寫一道綜合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個(gè)問題;②給出正確的解答過程;③寫出編寫意圖和學(xué)生答題情況的預(yù)測(cè).
材料①:如圖,先把一矩形紙片ABCD對(duì)折,得到折痕MN,然后把B點(diǎn)疊在折痕線上,得到△ABE,再過點(diǎn)B把矩形ABCD第三次折疊,使點(diǎn)D落在直線AD上,得到折痕PQ.當(dāng)沿著BE第四次將該紙片折疊后,點(diǎn)A就會(huì)落在EC上.

材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=______AC(用含α的三角函數(shù)表示).

材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由B出發(fā)沿線段BA向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由A出發(fā)沿線段AC向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2).

編寫試題選取的材料是______(填寫材料的序號(hào))
編寫的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
(2)是否存在某一時(shí)刻t,使線段PQ恰好把Rt△ACB的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時(shí)刻t,使四邊形PQP'C為菱形?若存在,求出此時(shí)菱形的邊長(zhǎng).
試題解答(寫出主要步驟即可):(1)過點(diǎn)Q作QD⊥AP于點(diǎn)D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
(2)分別求得Rt△ACB的周長(zhǎng)和面積,由周長(zhǎng)求出t,代入函數(shù)解析式驗(yàn)證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

解:(1)過點(diǎn)Q作QD⊥AP于點(diǎn)D,則易證△AQD∽△ABC,
∴AQ:QD=AB:BC,
∴2t:DQ=5:3,
∴DQ=t,
∴S△APQ=×AP×QD=(5-t)×t,
∴y與t之間的函數(shù)關(guān)系式為:y=-t2+3t;

(2)Rt△ACB的周長(zhǎng)=3+4+5=12,Rt△ACB的面積=×3×4=6,PQ恰好把Rt△ACB的周長(zhǎng)平分.
即有AP+AQ=12÷2=6,即2t+5-t=6得t=1,PQ恰好把Rt△ACB的面積平分,
即有SAPQ=×6=3;即y=-t2+3t=3,
顯然,代入t=1等式不成立,
所以不存在某一時(shí)刻t,使線段PQ恰好把Rt△ACB的周長(zhǎng)和面積同時(shí)平分;

(3)由題意可以知道,四邊形PQP'C為菱形,那么PC=PQ,
因?yàn)?PC2=PB2+CB2-2×PB×CB×cosB,
(由圖知道cosB=0.6)=t2+32-2t×3×0.6,
PQ2=AP2+AQ2-2×AP×AQ×cosA,
(由圖知道cosA=0.8)=(5-t)2+(2t)2-2×(5-t)×2t×0.8,
∵PC=PQ,即t2+32-2t×3×0.6=(5-t)2+(2t)2-2×(5-t)×2t×0.8),
解得t1=2(因?yàn)?<t<2舍去),t2=,
把t=代入,PC2=t2+32-2t×3×0.6,
解得PC=;
因此菱形的邊長(zhǎng)為cm.
分析:(1)過點(diǎn)Q作QD⊥AP于點(diǎn)D,利用相似三角形的判定與性質(zhì)和三角形的面積解答;
(2)求得三角形的周長(zhǎng)和面積,建立方程求得t,再代入函數(shù)解析式驗(yàn)證即可;
(3)由余弦定理分別用t表示PC、PQ,聯(lián)立方程解決問題.
點(diǎn)評(píng):此題綜合考查三角形的面積、勾股定理、余弦定理以及菱形的性質(zhì)等知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

根據(jù)所給的基本材料,請(qǐng)你進(jìn)行適當(dāng)?shù)奶幚恚帉懸坏谰C合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個(gè)問題;②給出正確的解答過程;③寫出編寫意圖和學(xué)生答題情況的預(yù)測(cè).
材料①:如圖,先把一矩形紙片ABCD對(duì)折,得到折痕MN,然后把B點(diǎn)疊在折痕線上,得到△ABE,再過點(diǎn)B把矩形ABCD第三次折疊,使點(diǎn)D落在直線AD上,得到折痕PQ.當(dāng)沿著BE第四次將該紙片折疊后,點(diǎn)A就會(huì)落在EC上.
精英家教網(wǎng)
材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=
 
AC(用含α的三角函數(shù)表示).
精英家教網(wǎng)
材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由B出發(fā)沿線段BA向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由A出發(fā)沿線段AC向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2).
精英家教網(wǎng)
編寫試題選取的材料是
 
(填寫材料的序號(hào))
編寫的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
(2)是否存在某一時(shí)刻t,使線段PQ恰好把Rt△ACB的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時(shí)刻t,使四邊形PQP'C為菱形?若存在,求出此時(shí)菱形的邊長(zhǎng).
試題解答(寫出主要步驟即可):(1)過點(diǎn)Q作QD⊥AP于點(diǎn)D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
(2)分別求得Rt△ACB的周長(zhǎng)和面積,由周長(zhǎng)求出t,代入函數(shù)解析式驗(yàn)證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年重慶市萬州區(qū)初中數(shù)學(xué)教師專業(yè)知識(shí)競(jìng)賽試卷(解析版) 題型:解答題

根據(jù)所給的基本材料,請(qǐng)你進(jìn)行適當(dāng)?shù)奶幚,編寫一道綜合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個(gè)問題;②給出正確的解答過程;③寫出編寫意圖和學(xué)生答題情況的預(yù)測(cè).
材料①:如圖,先把一矩形紙片ABCD對(duì)折,得到折痕MN,然后把B點(diǎn)疊在折痕線上,得到△ABE,再過點(diǎn)B把矩形ABCD第三次折疊,使點(diǎn)D落在直線AD上,得到折痕PQ.當(dāng)沿著BE第四次將該紙片折疊后,點(diǎn)A就會(huì)落在EC上.

材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=______AC(用含α的三角函數(shù)表示).

材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由B出發(fā)沿線段BA向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由A出發(fā)沿線段AC向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2).

編寫試題選取的材料是______(填寫材料的序號(hào))
編寫的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
(2)是否存在某一時(shí)刻t,使線段PQ恰好把Rt△ACB的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時(shí)刻t,使四邊形PQP'C為菱形?若存在,求出此時(shí)菱形的邊長(zhǎng).
試題解答(寫出主要步驟即可):(1)過點(diǎn)Q作QD⊥AP于點(diǎn)D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
(2)分別求得Rt△ACB的周長(zhǎng)和面積,由周長(zhǎng)求出t,代入函數(shù)解析式驗(yàn)證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>

同步練習(xí)冊(cè)答案