已知,如圖,正方形ABCD,菱形EFGP,點E、F、G分別在AB、AD、CD上,延長DC,PH⊥DC于H.
(1)求證:GH=AE;
(2)若菱形EFGP的周長為20cm,,F(xiàn)D=2,求△PGC的面積.

【答案】分析:(1)根據(jù)圖形性質(zhì)可證明△AEF≌△HGP,從而即得GH=AE.
(2)△PGC的面積=×GC×PH,而由(1)知PH=AF,再根據(jù)題中已知條件及邊長可求得邊AD、AF和DG的長,從而得到GC的長,即可求得面積.
解答:(1)證明:由菱形性質(zhì)知:∠EFG+∠FGP=180°,EF=GP=EP=FG,
又∠AEF+∠AFE=90°,∠DFG+∠DGF=90°,∠AFE+∠EFG+∠DFG=180°,∠DGF+∠FGP+∠PGH=180°,
∴∠AFE=∠GPH,
又∵∠A=∠H,
∴△AEF≌△HGP,(AAS)
∴GH=AE;

(2)解:∵菱形EFGP的周長為20cm,
∴EF=GP=EP=FG=5cm,
又∵,
∴在△AEF中,AF=4,EF=5,
又∵FD=2,
∴正方形邊長=AD=DC=6,
在△DFG中,DG==,
∴GC=6-
又由(1)知PH=AF,
∴△PGC的面積=×GC×PH=×GC×AF=12-2(cm2).
點評:本題考查了正方形性質(zhì)以及菱形性質(zhì),是基礎題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,O正方形ABCD的中心,BE平分∠DBC,交DC于點E,延長BC到點F,使CF=CE精英家教網(wǎng),連接DF,交BE的延長線于點G,連接OG.
(1)求證:△BCE≌△DCF;
(2)OG與BF有什么數(shù)量關系?證明你的結(jié)論;
(3)若GE•GB=4-2
2
,求正方形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖在正方形OADC中,點C的坐標為(0,4),點A的坐標為(4,0),CD的延長線交雙曲線y=
32
x
于點B.
(1)求直線AB的解析式;精英家教網(wǎng)
精英家教網(wǎng)
(2)G為x軸的負半軸上一點連接CG,過G作GE⊥CG交直線AB于E.求證CG=GE;
(3)在(2)的條件下,延長DA交CE的延長線于F,當G在x的負半軸上運動的過程中,請問
OG+GF
DF
的值是否為定值,若是,請求出其值;若不是,請說明你的理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、已知,如圖:正方形ABCD,將Rt△EFG斜邊EG的中點與點A重合,直角頂點F落在正方形的AB邊上,Rt△EFG的兩直角邊分別交AB、AD邊于P、Q兩點,(點P與點F重合),如圖所示:

(1)求證:EP2+GQ2=PQ2;
(2)若將Rt△EFG繞著點A逆時針旋轉(zhuǎn)α(0°<α≤90°),兩直角邊分別交AB、AD邊于P、Q兩點,如圖2所示:判斷四條線段EP、PF、FQ、QG之間是否存在什么確定的相等關系?若存在,證明你的結(jié)論.若不存在,請說明理由;
(3)若將Rt△EFG繞著點A逆時針旋轉(zhuǎn)α(90°<α<180°),兩直角邊分別交AB、AD兩邊延長線于P、Q兩點,并判斷四條線段EP、PF、FQ、QG之間存在何種確定的相等關系?按題意完善圖3,請直接寫出你的結(jié)論(不用證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,正方形ABCD的邊長為2a,H是以BC為直徑的半圓O上一點,過H與圓O相切的直線交AB精英家教網(wǎng)于E,交CD于F.
(1)當點H在半圓上移動時,切線EF在AB、CD上的兩個交點也分別在AB、CD上移動(E、A不重合,F(xiàn)、D不重合),試問:四邊形AEFD的周長是否也在變化?證明你的結(jié)論;
(2)設△BOE的面積為S1,△COF的面積為S2,正方形ABCD的面積為S,且S1+S2=
1348
S,求BE與CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,正方形紙片ABCD的邊長是4,點M、N分別在兩邊AB和CD上(其中點N不與點C重合),沿直線MN折疊該紙片,點B恰好落在AD邊上點E處.
(1)設AE=x,四邊形AMND的面積為 S,求 S關于x 的函數(shù)解析式,并指明該函數(shù)的定義域;
(2)當AM為何值時,四邊形AMND的面積最大?最大值是多少?
(3)點M能是AB邊上任意一點嗎?請求出AM的取值范圍.

查看答案和解析>>

同步練習冊答案