【題目】如圖,⊙O1的半徑為1,正方形ABCD的邊長為6,點O2為正方形ABCD的中心,O1O2垂直AB于P點,O1O2=8.若將⊙O1繞點P按順時針方向旋轉(zhuǎn)360°,在旋轉(zhuǎn)過程中,⊙O1與正方形ABCD的邊只有一個公共點的情況一共出現(xiàn)(
A.3次
B.5次
C.6次
D.7次

【答案】B
【解析】解:∵⊙O1的半徑為1,正方形ABCD的邊長為6,點O2為正方形ABCD的中心,O1O2垂直AB于P點, 設(shè)O1O2交圓O于M,
∴PM=8﹣3﹣1=4,
圓O1與以P為圓心,以4為半徑的圓相外切,
∴根據(jù)圖形得出有5次.
故選B.

根據(jù)⊙O1的半徑為1,正方形ABCD的邊長為6,點O2為正方形ABCD的中心,O1O2垂直AB于P點,設(shè)O1O2交圓O于M,求出PM=4,得出圓O1與以P為圓心,以4為半徑的圓相外切,即可得到答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,∠BAD、∠ADC的平分線AE、DF分別交BC于點E、F,AE與DF相交于點G.

(1)求證:∠AGD=90°.

(2)若CD=4cm,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的中線,EAD的中點,過點ABC的平行線交BE的延長線于點F,連接CF.

(1)試判斷四邊形ADCF的形狀,并證明;

(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AD是邊BC上的中線,過點A作AE∥BC,過點D作DE∥AB,DE與AC、AE分別交于點O、點E,連接EC.
(1)求證:AD=EC;
(2)當(dāng)∠BAC=90°時,求證:四邊形ADCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是工人師傅用同一種材料制成的金屬框架,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周長為24cm,CF=3cm,則制成整個金屬框架所需這種材料的總長度為 ________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為m cm,寬為n cm)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.則圖②中兩塊陰影部分的周長和是( )cm.

A.4m
B.4n
C.2(m+n)
D.4(m﹣n)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖案由邊長相等的黑、白兩色正方形按一定規(guī)律拼接而成,第n個圖案中白色正方形的個數(shù)比黑色正方形的個數(shù)多_____.(用含有n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=3,AD=4,∠ABC=60°,過BC的中點E作EF⊥AB,垂足為點F,與DC的延長線相交于點H,則△DEF的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖(1),已知AB位于直線MN的兩側(cè),請在直線MN上找一點P,使PA+PB最小,并說明依據(jù).

(2)如圖(2),動點O在直線MN上運動,連接AO,分別畫∠AOM、∠AON的角平分線OC、OD,請問∠COD的度數(shù)是否發(fā)生變化?若不變,求出∠COD的度數(shù);若變化,說明理由.

查看答案和解析>>

同步練習(xí)冊答案