【題目】如圖,△ABC、△CDE均為等邊三角形,連接BD、AE交于點(diǎn)O,BCAE交于于點(diǎn)P

1)求證:△ACE ≌ △BCD

2)求∠AOB的度數(shù).

3)連接OC,求證:OC平分∠AOD

【答案】(1)證明見解析;(2;(3)證明見解析.

【解析】

1)利用等邊三角形的性質(zhì)證明;

2)由得到∠CBD=CAE.再利用三角形內(nèi)角和等于180°,由APCBPO中有內(nèi)角互為對(duì)頂角進(jìn)而得出∠BOA=ACP=60°.

3)過C點(diǎn)作CGAECHBD,由三角形全等可得其對(duì)應(yīng)高相等.再根據(jù)到角兩邊距離相等的點(diǎn)在角平分線即可得出結(jié)論.

1)證明:都是等邊三角形,

,,

中,

,

SAS).

2

∴∠CBD=CAE
BPO =APC,

CBD+BPO+BOP=CAE+APC+ACP=180°.
∴∠BOP=ACP=60°,即∠AOB=60°

3)如圖,過C點(diǎn)作CGAE,CHBD,

AE=BD,

CG=CH,

CGAE,CHBD,

OC是∠AOD的角平分線,即OC平分∠AOD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+3與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B.

(1)求A,B兩點(diǎn)的坐標(biāo);

(2)過B點(diǎn)作直線BP與x軸相交于P,且使OP=2OA, 求ΔABP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A. 一定是一次函數(shù)

B. 有的實(shí)數(shù)在數(shù)軸上找不到對(duì)應(yīng)的點(diǎn)

C. 長(zhǎng)為的三條線段能組成直角三角形

D. 無論為何值,點(diǎn)總是在第二象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:線段AB,BC,

求作:矩形ABCD

老師說甲、乙同學(xué)的作圖都正確. 請(qǐng)你選擇其中一位同學(xué)的作業(yè)說明其作圖依據(jù).

我選擇____同學(xué),他的作圖依據(jù)是:___________________________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于、兩點(diǎn),直線軸交于點(diǎn),與軸交于點(diǎn).點(diǎn)是拋物線上一動(dòng)點(diǎn),過點(diǎn)作直線軸于點(diǎn),交直線于點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為

求拋物線的解析式;

若點(diǎn)軸上方的拋物線上,當(dāng)時(shí),求點(diǎn)的坐標(biāo);

若點(diǎn)是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),當(dāng)點(diǎn)落在軸上時(shí),請(qǐng)直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現(xiàn)測(cè)得AC、BCAB的夾角分別為45°68°,若點(diǎn)C到地面的距離CD28cm,坐墊中軸E處與點(diǎn)B的距離BE4cm,求點(diǎn)E到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中:長(zhǎng)度相等的弧是等弧;平分弦的直徑垂直于弦;直徑是弦;同弧或等弧所對(duì)的圓心角相等;在同圓或等圓中,相等的弦所對(duì)弧相等;錯(cuò)誤的個(gè)數(shù)為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,延長(zhǎng)至點(diǎn),過點(diǎn)的切線,切點(diǎn)為,過點(diǎn)的延長(zhǎng)線作垂線交該延長(zhǎng)線于點(diǎn)于點(diǎn),已知,

的長(zhǎng);

連結(jié),延長(zhǎng),連結(jié)

的長(zhǎng);

求證:的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)經(jīng)公司以30/千克的價(jià)格收購(gòu)一批農(nóng)產(chǎn)品進(jìn)行銷售,為了得到日銷售量p(千克)與銷售價(jià)格x(元/千克)之間的關(guān)系,經(jīng)過市場(chǎng)調(diào)查獲得部分?jǐn)?shù)據(jù)如下表:

銷售價(jià)格x(元/千克)

30

35

40

45

50

日銷售量p(千克)

600

450

300

150

0

(1)請(qǐng)你根據(jù)表中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識(shí)確定px之間的函數(shù)表達(dá)式;

(2)農(nóng)經(jīng)公司應(yīng)該如何確定這批農(nóng)產(chǎn)品的銷售價(jià)格,才能使日銷售利潤(rùn)最大?

(3)若農(nóng)經(jīng)公司每銷售1千克這種農(nóng)產(chǎn)品需支出a元(a>0)的相關(guān)費(fèi)用,當(dāng)40≤x≤45時(shí),農(nóng)經(jīng)公司的日獲利的最大值為2430元,求a的值.(日獲利=日銷售利潤(rùn)﹣日支出費(fèi)用)

查看答案和解析>>

同步練習(xí)冊(cè)答案