(12分)汽車油箱中的余油量Q(升)是它行駛的時間(小時)的一次函數(shù).某天該汽車外出時,油箱中余油量與行駛時間的變化關(guān)系如圖:

(1)根據(jù)圖象,求油箱中的余油Q與行駛時間的函數(shù)關(guān)系.(7分)
(2)從開始算起,如果汽車每小時行駛40千米,當(dāng)油箱中余油 20升時,該汽車行駛了多少千米?(5分)

(1);(2)320

解析試題分析:分析函數(shù)圖像可知函數(shù)為一次函數(shù),根據(jù)圖像中已知兩點,設(shè)出函數(shù)一般式,將點代人用待定系數(shù)法可求出函數(shù)解析式;(2)將y=20代入(1)中求得的解析式中,即可求得x值。
試題解析:解:(1)設(shè)一次函數(shù)的表達式為Q=kt+b(k0)
由圖象可知:函數(shù)圖象過(0,60)和(4,40)兩點

(2)當(dāng)Q=20時
-5t+60=20
解得t=8
408="320" (4分)
答:汽車行駛了320千米.
考點:一次函數(shù)實際應(yīng)用

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

“母親節(jié)”到了,八年級(1)班班委發(fā)起慰問烈屬王大媽的活動,決定在“母親節(jié)”期間全班同學(xué)利用課余時間去賣鮮花籌集慰問金.已知同學(xué)們從花店按每支1.2元買進鮮花,并按每支3元賣出.
(1)求同學(xué)們賣出鮮花的銷售額(元)與銷售量(支)之間的函數(shù)關(guān)系式;
(2)若從花店購買鮮花的同時,還總共用去40元購買包裝材料,求所籌集的慰問金(元)與銷售量(支)之間的函數(shù)關(guān)系式;若要籌集不少于500元的慰問金,則至少要賣出鮮花多少支?(慰問金=銷售額-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知一次函數(shù)
(1)為何值時,的增大而減。
(2)為何值時,它的圖象經(jīng)過原點?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

做服裝生意的王老板經(jīng)營甲、乙兩個店鋪,每個店鋪在同一段時間內(nèi)都能售出A,B兩種款式的服裝合計30件,并且每售出一件A款式和B款式服裝,甲店鋪獲毛利潤分別為30元和40元,乙店鋪獲毛利潤分別為27元和36元。某日王老板進貨A款式服裝35件,B款式服裝25件。怎樣分配給每個店鋪各30件服裝,使得在保證乙店鋪毛利潤不小于950元的前提下,王老板獲取的總毛利潤最大?最大的總毛利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知某一次函數(shù)的圖象經(jīng)過點(0,-3),且與正比例函數(shù)y=x的圖象相交于點(2,a)。

求:(1)a的值.(2)k、b的值。(3)這兩個函數(shù)圖象與x軸所圍成的三角形面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知一次函數(shù)的圖象與反比例函數(shù)的圖象相交,其中一個交點的縱坐標(biāo)為6.
(1)求兩個函數(shù)的解析式;
(2)若已知另一點的橫坐標(biāo)為,結(jié)合圖象求出時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某工程機械廠根據(jù)市場需求,計劃生產(chǎn)A、B兩種型號的大型挖掘機共100臺,該廠所籌生產(chǎn)資金不少于22 400萬元,但不超過22 500萬元,且所籌資金全部用于生產(chǎn)此兩型挖掘機,所生產(chǎn)的此兩型挖掘機可全部售出,此兩型挖掘機的生產(chǎn)成本和售價如下表:

型號
A
B
成本(萬元/臺)
200
240
售價(萬元/臺)
250
300
(1)該廠對這兩型挖掘機有哪幾種生產(chǎn)方案?
(2)該廠如何生產(chǎn)能獲得最大利潤?
(3)根據(jù)市場調(diào)查,每臺B型挖掘機的售價不會改變,每臺A型挖掘機的售價將會提高m萬元(m>0),該廠應(yīng)該如何生產(chǎn)獲得最大利潤?(注:利潤=售價﹣成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

蓮城超市以10元/件的價格調(diào)進一批商品,根據(jù)前期銷售情況,每天銷售量y(件)與該商品定價x(元)是一次函數(shù)關(guān)系,如圖所示.

(1)求銷售量y與定價x之間的函數(shù)關(guān)系式;
(2)如果超市將該商品的銷售價定為13元/件,不考慮其它因素,求超市每天銷售這種商品所獲得的利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某公司投資700萬元購甲、乙兩種產(chǎn)品的生產(chǎn)技術(shù)和設(shè)備后,進行這兩種產(chǎn)品加工.已知生產(chǎn)甲種產(chǎn)品每件還需成本費30元,生產(chǎn)乙種產(chǎn)品每件還需成本費20元.經(jīng)市場調(diào)研發(fā)現(xiàn):甲種產(chǎn)品的銷售單價為x(元),年銷售量為y(萬件),當(dāng)35≤x<50時,y與x之間的函數(shù)關(guān)系式為y=20﹣0.2x;當(dāng)50≤x≤70時,y與x的函數(shù)關(guān)系式如圖所示,乙種產(chǎn)品的銷售單價,在25元(含)到45元(含)之間,且年銷售量穩(wěn)定在10萬件.物價部門規(guī)定這兩種產(chǎn)品的銷售單價之和為90元.

(1)當(dāng)50≤x≤70時,求出甲種產(chǎn)品的年銷售量y(萬元)與x(元)之間的函數(shù)關(guān)系式.
(2)若公司第一年的年銷售量利潤(年銷售利潤=年銷售收入﹣生產(chǎn)成本)為W(萬元),那么怎樣定價,可使第一年的年銷售利潤最大?最大年銷售利潤是多少?
(3)第二年公司可重新對產(chǎn)品進行定價,在(2)的條件下,并要求甲種產(chǎn)品的銷售單價x(元)在50≤x≤70范圍內(nèi),該公司希望到第二年年底,兩年的總盈利(總盈利=兩年的年銷售利潤之和﹣投資成本)不低于85萬元.請直接寫出第二年乙種產(chǎn)品的銷售單價m(元)的范圍.

查看答案和解析>>

同步練習(xí)冊答案