【題目】如圖,某日的錢(qián)塘江觀潮信息如表:


按上述信息,小紅將“交叉潮”形成后潮頭與乙地之間的距離 (千米)與時(shí)間 (分鐘)的函數(shù)關(guān)系用圖3表示,其中:“11:40時(shí)甲地‘交叉潮’的潮頭離乙地12千米”記為點(diǎn) ,點(diǎn) 坐標(biāo)為 ,曲線 可用二次函數(shù) , 是常數(shù))刻畫(huà).
(1)求 的值,并求出潮頭從甲地到乙地的速度;
(2)11:59時(shí),小紅騎單車(chē)從乙地出發(fā),沿江邊公路以 千米/分的速度往甲地方向去看潮,問(wèn)她幾分鐘后與潮頭相遇?
(3)相遇后,小紅立即調(diào)轉(zhuǎn)車(chē)頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過(guò)乙地后均勻加速,而單車(chē)最高速度為 千米/分,小紅逐漸落后,問(wèn)小紅與潮頭相遇到落后潮頭1.8千米共需多長(zhǎng)時(shí)間?(潮水加速階段速度 是加速前的速度).

【答案】
(1)

解:11:40到12:10的時(shí)間是30分鐘,則B(30,0),

潮頭從甲地到乙地的速度==0.4(千米/分鐘).


(2)

解:∵潮頭的速度為0.4千米/分鐘,

∴到11:59時(shí),潮頭已前進(jìn)19×0.4=7.6(千米),

∴此時(shí)潮頭離乙地=12-7.6=4.4(千米),

設(shè)小紅出發(fā)x分鐘與潮頭相遇,

∴0.4x+0.48x=4.4,

∴x=5,

∴小紅5分鐘后與潮頭相遇.


(3)

解:把(30,0),C(55,15)代入s=,

解得b=,c=,

∴s=.

∵v0=0.4,∴v=,

當(dāng)潮頭的速度達(dá)到單車(chē)最高速度0.48千米/分,即v=0.48時(shí),

=0.48,∴t=35,

∴當(dāng)t=35時(shí),s=,

∴從t=35分鐘(12:15時(shí))開(kāi)始,潮頭快于小紅速度奔向丙地,小紅逐漸落后,但小紅仍以0.48千米/分的速度勻速追趕潮頭.

設(shè)小紅離乙地的距離為s1,則s1與時(shí)間t的函數(shù)關(guān)系式為s1=0.48t+h(t≥35),

當(dāng)t=35時(shí),s1=s=,代入得:h=,

所以s1=

最后潮頭與小紅相距1.8千米時(shí),即s-s1=1.8,

所以,,

解得t1=50,t2=20(不符合題意,舍去)

∴t=50,

小紅與潮頭相遇后,按潮頭速度與潮頭并行到達(dá)乙地用時(shí)6分鐘,

∴共需要時(shí)間為6+50-30=26分鐘,

∴小紅與潮頭相遇到潮頭離她1.8千米外共需26分鐘.


【解析】(1)11:40到12:10的時(shí)間是30分鐘,由圖3可得甲乙兩地的距離是12km,則可求出速度;
(2)此題是相遇問(wèn)題,求出小紅出發(fā)時(shí),她與潮頭的距離;再根據(jù)速度和×?xí)r間=兩者的距離,即可求出時(shí)間;
(3)由(2)中可得小紅與潮頭相遇的時(shí)間是在12:04,則后面的運(yùn)動(dòng)過(guò)程為12:04開(kāi)始,小紅與潮頭并行6分鐘到12:10到達(dá)乙地,這時(shí)潮頭開(kāi)始從0.4千米/分加速到0.48千米/分鐘,由題可得潮頭到達(dá)乙后的速度為v= , 在這段加速的過(guò)程,小紅與潮頭還是并行,求出這時(shí)的時(shí)間t1 , 從這時(shí)開(kāi)始,寫(xiě)出小紅離乙地關(guān)于時(shí)間t的關(guān)系式s1 , 由s-s1=1.8,可解出的時(shí)間t2(從潮頭生成開(kāi)始到現(xiàn)在的時(shí)間),所以可得所求時(shí)間=6+t2-30。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直徑為650mm的圓柱形油槽內(nèi)裝入一些油后,截面如圖所示,若油面寬AB=600mm,則油的最大深度為mm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用同樣大小的黑色棋子按如圖所示的規(guī)律擺放:

(1)第5個(gè)圖形有多少顆黑色棋子?

(2)第幾個(gè)圖形有2013顆黑色棋子?請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c(b,c為常數(shù)).
(1)當(dāng)b=2,c=﹣3時(shí),求二次函數(shù)圖象的頂點(diǎn)坐標(biāo);
(2)當(dāng)c=10時(shí),若在函數(shù)值y=1的情況下,只有一個(gè)自變量x的值與其對(duì)應(yīng),求此時(shí)二次函數(shù)的解析式;
(3)當(dāng)c=b2時(shí),若在自變量x的值滿(mǎn)足b≤x≤b+3的情況下,與其對(duì)應(yīng)的函數(shù)值y的最小值為21,求此時(shí)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于函數(shù) 的四個(gè)命題:①當(dāng) 時(shí), 有最小值10;② 為任意實(shí)數(shù), 時(shí)的函數(shù)值大于 時(shí)的函數(shù)值;③若 ,且 是整數(shù),當(dāng) 時(shí), 的整數(shù)值有 個(gè);④若函數(shù)圖象過(guò)點(diǎn) ,其中 , ,則 .其中真命題的序號(hào)是( )
A.①
B.②
C.③
D.④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】湖州素有魚(yú)米之鄉(xiāng)之稱(chēng),某水產(chǎn)養(yǎng)殖大戶(hù)為了更好地發(fā)揮技術(shù)優(yōu)勢(shì),一次性收購(gòu)了 淡水魚(yú),計(jì)劃養(yǎng)殖一段時(shí)間后再出售.已知每天放養(yǎng)的費(fèi)用相同,放養(yǎng) 天的總成本為 萬(wàn)元;放養(yǎng) 天的總成本為 萬(wàn)元(總成本=放養(yǎng)總費(fèi)用+收購(gòu)成本).
(1)設(shè)每天的放養(yǎng)費(fèi)用是 萬(wàn)元,收購(gòu)成本為 萬(wàn)元,求 的值;
(2)設(shè)這批淡水魚(yú)放養(yǎng) 天后的質(zhì)量為 ),銷(xiāo)售單價(jià)為 元/ .根據(jù)以往經(jīng)驗(yàn)可知: 的函數(shù)關(guān)系為 ; 的函數(shù)關(guān)系如圖所示.

①分別求出當(dāng) 時(shí), 的函數(shù)關(guān)系式;
②設(shè)將這批淡水魚(yú)放養(yǎng) 天后一次性出售所得利潤(rùn)為 元,求當(dāng) 為何值時(shí), 最大?并求出最大值.(利潤(rùn)=銷(xiāo)售總額-總成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)方法回顧:在學(xué)習(xí)三角形中位線時(shí),為了探索三角形中位線的性質(zhì),思路如下:

第一步添加輔助線:如圖1,在中,延長(zhǎng)分別是的中點(diǎn))到點(diǎn),使得,連接;

第二步證明,再證四邊形是平行四邊形,從而得出三角形中位線的性質(zhì)結(jié)論:____________________________________(請(qǐng)用DE與BC表示)


(2)問(wèn)題解決:如圖2,在正方形ABCD中,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=2,DF=3,∠GEF=90°,求GF的長(zhǎng).

(3)拓展研究:如圖3,在四邊形ABCD中,∠A=105°,∠D=120°,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=,DF=2,∠GEF=90°,求GF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上三點(diǎn)M,ON對(duì)應(yīng)的數(shù)分別為-1,03,點(diǎn)P為數(shù)軸上任意一點(diǎn),其對(duì)應(yīng)的數(shù)為x

1MN的長(zhǎng)為

2如果點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,那么x的值是

3數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)M點(diǎn)N的距離之和是8?若存在,直接寫(xiě)出x的值若不存在,請(qǐng)說(shuō)明理由

4如果點(diǎn)P以每分鐘1個(gè)單位長(zhǎng)度的速度從點(diǎn)O向左運(yùn)動(dòng)同時(shí)點(diǎn)M和點(diǎn)N分別以每分鐘2個(gè)單位長(zhǎng)度和每分鐘3個(gè)單位長(zhǎng)度的速度也向左運(yùn)動(dòng).設(shè)t分鐘時(shí)點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D、E、F分別在正三角形ABC的三邊上,且△DEF也是正三角形,若△ABC的邊長(zhǎng)為a,△DEF的邊長(zhǎng)為b.則△AEF的內(nèi)切圓半徑為

查看答案和解析>>

同步練習(xí)冊(cè)答案