【題目】如圖,已知拋物線y=x2+2x﹣3,把此拋物線沿y軸向上平移,平移后的拋物線和原拋物線與經(jīng)過點(﹣2,0),(2,0)且平行于y軸的兩條直線所圍成的陰影部分的面積為s,平移的距離為m,則下列圖象中,能表示s與m的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

【答案】B
【解析】解:如圖,我們把拋物線沿y軸向上平移,平移后的拋物線和原拋物線及直線x=2,x=﹣2所圍成的陰影部分的面積S可以看做和矩形BB′C′C等積,于是可以看出S與m是正比例函數(shù)關(guān)系

故選:B.
【考點精析】本題主要考查了二次函數(shù)圖象的平移的相關(guān)知識點,需要掌握平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(h,k)(2)對x軸左加右減;對y軸上加下減才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠C=90°,AC=3BC=4,點DAB的中點,點EDC的延長線上,且CE=CD,過點BBFDEAE的延長線于點F,交AC的延長線于點G

1)求證:AB=BG;

2)若點P是直線BG上的一點,試確定點P的位置,使BCPBCD相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12)如圖1,已知Rt△ABC,AB=BC,AC=2,把一塊含30°角的三角板DEF的直角頂點D放在AC的中點上(直角三角板的短直角邊為DE,長直角邊為DF),CDE,BDF上.

(1)求重疊部分△BCD的面積;

(2)如圖2,將直角三角板DEFD點按順時針方向旋轉(zhuǎn)30,DEBC于點M,DFAB于點N.

求證:DM=DN;

在此條件下重疊部分的面積會發(fā)生變化嗎?若發(fā)生變化請求出重疊部分的面積,若不發(fā)生變化請說明理由;

(3)如圖3,將直角三角板DEFD點按順時針方向旋轉(zhuǎn)α(0<α<90),DEBC于點M,DFAB于點N,DM=DN的結(jié)論仍成立嗎?重疊部分的面積會變嗎?(請直接寫出結(jié)論,不需要說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知小紅的成績?nèi)缦卤恚?/span>

文化成績

綜合素

質(zhì)成績

總成績

測驗1

測驗2

測驗3

小紅

560

580

630

12

(1)小紅的這三次文化測試成績的平均分是_____分;

(2)用(1)中的平均分加上綜合素質(zhì)成績就是小紅的總成績.用同樣的方法計算出小紅所在班級全部同學(xué)的總成績并繪制出了如圖所示的頻數(shù)分布直方圖.那么小紅所在班級共有_____名同學(xué);

(3)學(xué)校將根據(jù)總成績由高到低保送小紅所在班級前15名同學(xué)進(jìn)入高中學(xué)習(xí),請問小紅能被保送嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)將組織七年級學(xué)生春游一天,由王老師和甲、乙兩同學(xué)到客車租賃公司洽談租車事宜

1兩同學(xué)向公司經(jīng)理了解租車的價格公司經(jīng)理對他們說公司有45座和60座兩種型號的客車可供租用60座的客車每輛每天的租金比45座的貴100元王老師說我們學(xué)校八年級昨天在這個公司租了5輛45座和2輛60座的客車,一天的租金為1600元你們能知道45座和60座的客車每輛每天的租金各是多少元嗎甲、乙兩同學(xué)想了一下,都說知道了價格

聰明的你知道45座和60座的客車每輛每天的租金各是多少元嗎?

2公司經(jīng)理問你們準(zhǔn)備怎樣租車甲同學(xué)說我的方案是只租用45座的客車,可是會有一輛客車空出30個座位乙同學(xué)說我的方案只租用60座客車,正好坐滿且比甲同學(xué)的方案少用兩輛客車王老師在旁聽了他們的談話說從經(jīng)濟(jì)角度考慮,還有別的方案嗎?如果是你,你該如何設(shè)計租車方案并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加快城市群的建設(shè)與發(fā)展,在A,B兩城市間新建一條城際鐵路,建成后,鐵路運行里程由現(xiàn)在的120km縮短至114km,城際鐵路的設(shè)計平均時速要比現(xiàn)行的平均時速快110km,運行時間僅是現(xiàn)行時間的,求建成后的城際鐵路在A,B兩地的運行時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,AB=a,C是半圓上一點,弦AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,連接CD,DB,OD.
(1)求證:△CDF≌△BDE;
(2)當(dāng)AD=時,四邊形AODC是菱形;
(3)當(dāng)AD=時,四邊形AEDF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某旅游商品經(jīng)銷店欲購進(jìn)A、B兩種紀(jì)念品,若用380元購進(jìn)A種紀(jì)念品7件,B種紀(jì)念品8件;也可以用380元購進(jìn)A種紀(jì)念品10件,B種紀(jì)念品6件.

1)求AB兩種紀(jì)念品的進(jìn)價分別為多少?

2)若該商店每銷售1A種紀(jì)念品可獲利5元,每銷售1B種紀(jì)念品可獲利7元,該商店準(zhǔn)備用不超過900元購進(jìn)A、B兩種紀(jì)念品40件,且這兩種紀(jì)念品全部售出時總獲利不低于216元,問應(yīng)該怎樣進(jìn)貨,才能使總獲利最大,最大為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ACB=90°,AC=BC,ADCE,BECE,垂足分別為DE

1)證明:BCE≌△CAD;

2)若AD=25cm,BE=8cm,求DE的長.

查看答案和解析>>

同步練習(xí)冊答案