觀察下面的變形規(guī)律:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
;
1
3×4
=
1
3
-
1
4
;…
請根據(jù)以上變形規(guī)律解答下面的問題:
(1)求:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2011×2012
 的值.
(2)求:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
2011×2013
的值.
分析:(1)根據(jù)上述等式得出拆項規(guī)律,將原式變形計算即可得到結(jié)果;
(2)利用得出的規(guī)律將原式變形,計算即可得到結(jié)果.
解答:解:(1)
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2011×2012
 
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
2011
-
1
2012

═1-
1
2012

=
2011
2012
;

(2)
1
1×3
+
1
3×5
+
1
5×7
+…+
1
2011×2013

=
1
2
×(1-
1
3
+
1
3
-
1
5
+…+
1
2011
-
1
2013

=
1
2
×(1-
1
2013

=
1
2
×
2012
2013

=
1006
2013
點評:此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

觀察下面的變形規(guī)律:
1
1×2
=1-
1
2
;
1
2×3
=
1
2
-
1
3
;
1
3×4
=
1
3
-
1
4
;…
解答下面的問題:
(1)若n為正整數(shù),請你猜想
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
;
(2)證明你猜想的結(jié)論;
(3)求和:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2009×2010

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•平和縣質(zhì)檢)觀察下面的變形規(guī)律:
1
1×2
=1-
1
2
; 
1
2×3
=
1
2
-
1
3
;
1
3×4
=
1
3
-
1
4
;…
解答下面的問題:
(1)若n為正整數(shù),請你猜想
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
;
(2)證明你猜想的結(jié)論;
(3)求和:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2011×2012

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

觀察下面的變形規(guī)律:
1
1×2
=1-
1
2
;
1
2×3
=
1
2
-
1
3
;
1
3×4
=
1
3
-
1
4
;…
1
2013×2014
=
1
2013
-
1
2014

解答下面的問題:
(1)試求
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2013×2014
;
(2)若n為正整數(shù),請你猜想
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
;
(3)請你根據(jù)變形規(guī)律進行適當變形,求
1
1×3
+
1
3×5
+
1
5×7
+…+
1
2013×2015

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

觀察下面的變形規(guī)律:
1
1×2
=1-
1
2
;
1
2×3
=
1
2
-
1
3
;
1
3×4
=
1
3
-
1
4
;…解答下面的問題:
(1)若n為正整數(shù),請你猜想
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
;
(2)求和:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2010×2011

查看答案和解析>>

同步練習冊答案