【題目】某學(xué)校為了解全校學(xué)生對電視節(jié)目的喜愛情況(新聞、體育、動畫、娛樂、戲曲),從全校學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并把調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖.
請根據(jù)以上信息,解答下列問題:
(1)這次被調(diào)查的學(xué)生共有多少人?
(2)請將條形統(tǒng)計圖補(bǔ)充完整;
(3)若該校約有1500名學(xué)生,估計全校學(xué)生中喜歡娛樂節(jié)目的有多少人?
(4)該校廣播站需要廣播員,現(xiàn)決定從喜歡新聞節(jié)目的甲、乙、丙、丁四名同學(xué)中選取2名,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)
【答案】(1)50人;(2)補(bǔ)圖見解析;(3)540人;(4)
【解析】(1)根據(jù)動畫類人數(shù)及其百分比求得總?cè)藬?shù);
(2)總?cè)藬?shù)減去其他類型人數(shù)可得體育類人數(shù),據(jù)此補(bǔ)全圖形即可;
(2)用樣本估計總體的思想解決問題;
(3)根據(jù)題意先畫出樹狀圖,得出所有情況數(shù),再根據(jù)概率公式即可得出答案.
(1)這次被調(diào)查的學(xué)生人數(shù)為15÷30%=50人;
(2)喜愛“體育”的人數(shù)為50﹣(4+15+18+3)=10人,補(bǔ)全圖形如下:
(3)估計全校學(xué)生中喜歡娛樂節(jié)目的有1500×=540人;
(4)列表如下:
所有等可能的結(jié)果為12種,恰好選中甲、乙兩位同學(xué)的有2種結(jié)果,所以恰好選中甲、乙兩位同學(xué)的概率為=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以線段AB為直徑作⊙O,CD與⊙O相切于點(diǎn)E,交AB的延長線于點(diǎn)D, 連接BE,過點(diǎn)O作OC∥BE交切線DE于點(diǎn)C,連接AC .
(1)求證:AC是⊙O的切線 ;
(2)若BD=OB=4,求弦AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境
在綜合與實(shí)踐課上,老師讓同學(xué)們以“兩條平行線AB,CD和一塊含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”為主題開展數(shù)學(xué)活動.
操作發(fā)現(xiàn)
(1)如圖(1),小明把三角尺的60°角的頂點(diǎn)G放在CD上,若∠2=2∠1,求∠1的度數(shù);
(2)如圖(2),小穎把三角尺的兩個銳角的頂點(diǎn)E、G分別放在AB和CD上,請你探索并說明∠AEF與∠FGC之間的數(shù)量關(guān)系;
結(jié)論應(yīng)用
(3)如圖(3),小亮把三角尺的直角頂點(diǎn)F放在CD上,30°角的頂點(diǎn)E落在AB上.若∠AEG=α,則∠CFG等于______(用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用同樣規(guī)格的黑、白兩種顏色的正方形瓷磚按下圖所示的方式鋪寬為1.5米的小路.
(1)鋪第5個圖形用黑色正方形瓷磚 塊;
(2)按照此方式鋪下去,鋪第 n 個圖形用黑色正方形瓷磚 塊;(用含 n的代數(shù)式表示)
(3)若黑、白兩種顏色的瓷磚規(guī)格都為( 長0.5米寬0.5米),且黑色正方形瓷磚每塊價格 25 元,白色正方形瓷磚每塊價格30元,若按照此方式恰好鋪滿該小路某一段(該段小路的總面積為 18.75 平方米),求該段小路所需瓷磚的總費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某月的月歷,用如圖恰好能完全遮蓋住月歷表中的五個數(shù)字,設(shè)帶陰影的“”形中的5個數(shù)字的最小數(shù)為a.
請用含a的代數(shù)式表示這5個數(shù);
這五個數(shù)的和與“”形中心的數(shù)有什么關(guān)系?
蓋住的5個數(shù)字的和能為105嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料.
在數(shù)學(xué)課上,老師請同學(xué)思考如下問題:
已知:如圖①,在△ABC中,∠A=90°.
圖①
求作:⊙P,使得點(diǎn)P在邊AC上,且⊙P與AB,BC都相切.
小軒的主要作法如下:
如圖②,
圖②
(1)作∠ABC的平分線BF,與AC交于點(diǎn)P;
(2)以P為圓心,AP長為半徑作⊙P,則⊙P即為所求.
老師說:“小軒的作法正確.”
請回答:⊙P與BC相切的依據(jù)是 ____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠BAC的平分線與BC的垂直平分線DG相交于點(diǎn)D,DE⊥AB,DF⊥AC,垂足分別為E、F,AB=6,AC=3,則BE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個水池,其底面是邊長為16尺的正方形,一根蘆葦AB生長在它的正中央,高出水面部分BC的長為2尺,如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳?/span>B恰好碰到岸邊的B′,則這根蘆葦AB的長是( 。
A. 15尺B. 16尺C. 17尺D. 18尺
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com