精英家教網(wǎng)如圖,一圓錐的底面半徑為2,母線PB的長(zhǎng)為6,D為PB的中點(diǎn).一只螞蟻從點(diǎn)A出發(fā),沿著圓錐的側(cè)面爬行到點(diǎn)D,則螞蟻爬行的最短路程為( 。
A、
3
B、2
3
C、3
3
D、3
分析:要求螞蟻爬行的最短距離,需將圓錐的側(cè)面展開(kāi),進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果.
解答:解:由題意知,底面圓的直徑AB=4,
故底面周長(zhǎng)等于4π.
設(shè)圓錐的側(cè)面展開(kāi)后的扇形圓心角為n°,精英家教網(wǎng)
根據(jù)底面周長(zhǎng)等于展開(kāi)后扇形的弧長(zhǎng)得4π=
nπ×6
180
,
解得n=120°,
所以展開(kāi)圖中∠APD=120°÷2=60°,
因?yàn)榘霃絇A=PB,∠APB=60°,
故三角形PAB為等邊三角形,
又∵D為PB的中點(diǎn),
所以AD⊥PB,在直角三角形PAD中,PA=6,PD=3,
根據(jù)勾股定理求得AD=3
3
,
所以螞蟻爬行的最短距離為3
3

故選C.
點(diǎn)評(píng):圓錐的側(cè)面展開(kāi)圖是一個(gè)扇形,此扇形的弧長(zhǎng)等于圓錐底面周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).本題就是把圓錐的側(cè)面展開(kāi)成扇形,“化曲面為平面”,用勾股定理解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•廣州)如圖,點(diǎn)B的坐標(biāo)為(0,-2),點(diǎn)A在x軸正半軸上,將Rt△AOB繞y軸旋轉(zhuǎn)一周,得到一個(gè)圓錐.
(1)當(dāng)圓錐的側(cè)面積為
5
π時(shí),求AB所在直線的函數(shù)解析式;
(2)若已知OA的長(zhǎng)度為a,按這個(gè)圓錐的形狀造一個(gè)容器,并在母線AB上刻出把這個(gè)容器的容積兩等分的刻度點(diǎn)C,試用含a的代數(shù)式去表示BC的長(zhǎng)度t(圓錐體積公式:V=
1
3
πr2h,其中r和h分別是圓錐的底面半徑和高).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1997年廣東省廣州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,點(diǎn)B的坐標(biāo)為(0,-2),點(diǎn)A在x軸正半軸上,將Rt△AOB繞y軸旋轉(zhuǎn)一周,得到一個(gè)圓錐.
(1)當(dāng)圓錐的側(cè)面積為π時(shí),求AB所在直線的函數(shù)解析式;
(2)若已知OA的長(zhǎng)度為a,按這個(gè)圓錐的形狀造一個(gè)容器,并在母線AB上刻出把這個(gè)容器的容積兩等分的刻度點(diǎn)C,試用含a的代數(shù)式去表示BC的長(zhǎng)度t(圓錐體積公式:V=πr2h,其中r和h分別是圓錐的底面半)徑和高).

查看答案和解析>>

同步練習(xí)冊(cè)答案