【題目】(感知)如圖,在四邊形ABCD中,點(diǎn)P在邊AB上(點(diǎn)P不與點(diǎn)A、B重合),∠A=∠B=∠DPC=90°.易證:△DAP∽△PBC(不要求證明).

(探究)如圖,在四邊形ABCD中,點(diǎn)P在邊AB上(點(diǎn)P不與點(diǎn)A、B重合),∠A=∠B=∠DPC.

(1)求證:△DAP~△PBC.

(2)PD=5,PC=10,BC=9,求AP的長(zhǎng).

(應(yīng)用)如圖,在△ABC中,AC=BC=4,AB=6,點(diǎn)P在邊AB上(點(diǎn)P不與點(diǎn)A、B重合),連結(jié)CP,作∠CPE=∠A,PE與邊BC交于點(diǎn)E.當(dāng)CE=3EB時(shí),求AP的長(zhǎng).

【答案】【探究】(1)證明見解析(2)AP=4.5;【應(yīng)用】AP=3+或AP=3﹣

【解析】

探究:(1)根據(jù)外角的性質(zhì)得到∠DPB=A+ADP,等量代換得到∠ADP=CPB,根據(jù)相似三角形的判定定理即可得到結(jié)論;

(2)根據(jù)相似三角形的性質(zhì)得到,代入數(shù)據(jù)即可得到結(jié)論;

應(yīng)用根據(jù)等腰三角形的性質(zhì)得到∠A=B,根據(jù)相似三角形的性質(zhì)得到ACBE=APBP,代入數(shù)據(jù)即可得到結(jié)論.

探究:(1)∵∠DPB=A+ADP,

∴∠DPC+CPB=A+ADP,

∵∠A=DPC,

∴∠ADP=CPB,

∵∠A=B,

∴△DAP∽△PBC;

(2)∵△DAP∽△PBC,

,

,

AP=4.5;

應(yīng)用AC=BC,

∴∠A=B,

∵∠CPE=A,

∴∠A=CPE=B,

由探究得△CAP∽△PBE,

,

ACBE=APBP,

BC=4,CE=3EB,

BE=1,

AC=4,BP=AB﹣AP=6﹣AP,

AP(6﹣AP)=4,

AP=3+AP=3﹣

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用黑白棋子擺出下列一組圖形,根據(jù)規(guī)律可知.

(1)在第n個(gè)圖中,白棋共有   枚,黑棋共有   枚;

(2)在第幾個(gè)圖形中,白棋共有300枚;

(3)白棋的個(gè)數(shù)能否與黑棋的個(gè)數(shù)相等?若能,求出是第幾個(gè)圖形,若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD中,E,F(xiàn)分別是AB,AD邊上的點(diǎn),DE與CF交于點(diǎn)G.

(1)如圖1,若四邊形ABCD是矩形,且DE⊥CF.證明:=;

(2)如圖2,若四邊形ABCD是平行四邊形,試探究:

當(dāng)∠B與∠EGC滿足什么關(guān)系時(shí),使得=成立?并證明你的結(jié)論;

(3)如圖3,若BA=BC= 3,DA=DC= 4,∠BAD= 90°,DE⊥CF.求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的袋子中裝有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字3、4、5.從袋子中隨機(jī)取出一個(gè)小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個(gè)小球,用小球上的數(shù)字作為個(gè)位上的數(shù)字,這樣組成一個(gè)兩位數(shù),試問(wèn):按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個(gè)位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫樹狀圖法加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明為了檢驗(yàn)兩枚六個(gè)面分別刻有點(diǎn)數(shù)1、 2、3、4、5、6的正六面體骰子的質(zhì)量是否都合格,在相同的條件下,同時(shí)拋兩枚骰子20 00 0次,結(jié)果發(fā)現(xiàn)兩個(gè)朝上面的點(diǎn)數(shù)和是7的次數(shù)為20次.你認(rèn)為這兩枚骰子質(zhì)量是否都合格(合格標(biāo)準(zhǔn)為:在相同條件下拋骰子時(shí),骰子各個(gè)面朝上的機(jī)會(huì)相等)?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(感知)如圖,在四邊形ABCD中,點(diǎn)P在邊AB上(點(diǎn)P不與點(diǎn)A、B重合),∠A=∠B=∠DPC=90°.易證:△DAP∽△PBC(不要求證明).

(探究)如圖,在四邊形ABCD中,點(diǎn)P在邊AB上(點(diǎn)P不與點(diǎn)A、B重合),∠A=∠B=∠DPC.

(1)求證:△DAP~△PBC.

(2)PD=5,PC=10,BC=9,求AP的長(zhǎng).

(應(yīng)用)如圖,在△ABC中,AC=BC=4,AB=6,點(diǎn)P在邊AB上(點(diǎn)P不與點(diǎn)A、B重合),連結(jié)CP,作∠CPE=∠A,PE與邊BC交于點(diǎn)E.當(dāng)CE=3EB時(shí),求AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明騎單車上學(xué),當(dāng)他騎了一段路時(shí),想起要買某本書,于是又折回到剛經(jīng)過(guò)的某書店,買到書后繼續(xù)去學(xué)校,以下是他本次上學(xué)所用的時(shí)間與路程的關(guān)系示意圖

根據(jù)圖中提供的信息回答下列問(wèn)題

1)小明家到學(xué)校的路程是__________米,從家到學(xué)校一共用了__________分鐘.

2)小明在書店停留了__________分鐘.

3)本次上學(xué)途中,小明1214分行駛了__________米.1214分的速度__________/分.

4)在整個(gè)上學(xué)的途中__________(哪個(gè)時(shí)間段)速度最快.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12m,寬是4m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線最高點(diǎn)D到墻面OB的水平距離為6m時(shí),隧道最高點(diǎn)D距離地面10m.

(1)求該拋物線的函數(shù)關(guān)系式;

(2)一輛貨運(yùn)汽車載一長(zhǎng)方體集裝箱后寬為4m,高為6m,如果隧道內(nèi)設(shè)雙向行車道,那么這輛貨車能否安全通過(guò)?

(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過(guò)8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘海上巡邏船在A地巡航,這時(shí)接到B地海上指揮中心緊急通知:在指揮中心北偏西60°方向的C地有一艘漁船遇險(xiǎn),要求馬上前去救援,要求馬上前去救援.此時(shí)C地位于A地北偏西30°方向上,A地位于B地北偏西75°方向上,A、B兩地之間的距離為12海里,則A、C兩地之間的距離為________

查看答案和解析>>

同步練習(xí)冊(cè)答案